source: http://en.wikipedia.org/wiki/Tensor
Tensors are geometric objects that describe linear relations between vectors, scalars, and other tensors. Elementary examples of such relations include the dot product, the cross product, and linear maps. Vectors and scalars themselves are also tensors. A tensor can be represented as a multi-dimensional array of numerical values. The order (also degree or rank) of a tensor is the dimensionality of the array needed to represent it(用以表示的数组的维数), or equivalently, the number of indices needed to label a component of that array. For example, a linear map can be represented by a matrix, a 2-dimensional array, and therefore is a 2nd-order tensor. A vector can be represented as a 1-dimensional array and is a 1st-order tensor. Scalars are single numbers and are thus zeroth-order tensors(标量是一个零阶张量).
Tensors are used to represent correspondences between sets of geometric vectors. For example, the stress tensor T takes a direction v as input and produces the stress T(v) on the surface normal to this vector as output and so expresses a relationship between these two vectors, as shown in the figure (right).
Because they express a relationship between vectors, tensors themselves must be independent of a particular choice of coordinate system. Taking a coordinate basis orframe of reference and applying the tensor to it results in an organized multidimensional array representing the tensor in that basis, or as it looks from that frame of reference. The coordinate independence of a tensor then takes the form of a "covariant" transformation law that relates the array computed in one coordinate system to that computed in another one. This transformation law is considered to be built in to the notion of a tensor in a geometric or physical setting, and the precise form of the transformation law determines the type (or valence) of the tensor.
Tensors are important in physics because they provide a concise mathematical framework for formulating and solving physics problems in areas such as elasticity, fluid mechanics, and general relativity. Tensors were first conceived by Tullio Levi-Civita and Gregorio Ricci-Curbastro, who continued the earlier work of Bernhard Riemann and Elwin Bruno Christoffel and others, as part of the absolute differential calculus. The concept enabled an alternative formulation of the intrinsic differential geometry of a manifold in the form of the Riemann curvature tensor.
本文介绍了张量的基本概念,张量是一种几何对象,用于描述矢量、标量和其他张量之间的线性关系。张量可以表示为多维数值数组,并且其阶数反映了表示张量所需的数组维度。文章还讨论了张量在物理学中的应用,如弹性力学、流体力学和广义相对论。
1510

被折叠的 条评论
为什么被折叠?



