张量入门(Tensor for Beginners)(二)

1.2 张量是什么

1.2.1 张量的数组“定义”

        张量=多维数组。

        在初学向量的时,很容易进入这样的误区:

s(v_1,v_2,\cdots,v_n)^{T}\begin{bmatrix} m_{11}& m_{12}& \cdots & m_{1n} \\ m_{21}& m_{22}& \cdots & m_{2n} \\ \vdots& \vdots & &\vdots \\ m_{n1}&m_{n2} &\cdots &m_{nn} \end{bmatrix}正方体(假装有个cube)
标量向量(矢量)矩阵三阶张量
rank 0rank 1rank 2

rank3

 

        这个定义的意思是:标量是零阶张量(没有方向),向量是一阶张量(有一个方向),矩阵是二阶张量(有两个方向),正方体组成的数组(“三维”数组,有三个方向)是三阶张量,以此类推可以得到抽象的n阶张量。张量确实可以表示成这种形式,但仅仅是形式,这种定义完全是错误的!!它虽然能如此表示但并不能说明张量的本质(what they fundamentally are)。张量不仅仅是数字的集合,它具有完全的几何意义。

1.2.2 张量的坐标定义

        张量=是一个在坐标系发生改变的时候保持不变的对象,它拥有在坐标系变化中可以预测的特别的内容(components)。

        这个定义其实就是张量最初的定义,在物理学中的定义。物理学家希望同一个物理量不因观察者的角度不同而产生偏差,由此提出了这个定义。众所周知,向量是满足这个定义的,所以可以认为向量是一种张量。下面我们会用vector来说明这个问题。在这个定义下:

vector are invariant
vector components are not invariant

vector作为物理量是不变的,但它的内容会因为坐标系的选择而有所变化,如下图所示。

向量的物理不变和内容可变

将铅笔视为一个向量,在不同坐标系下它的内容会有所变化。

1.2.3 张量的抽象定义

        张量=用张量积(Tensor product)联合起来的向量(vector)和协变向量(covector)构成的集合。

        这可以算作是张量最佳的定义了,它完全是数学的、精确的。等我们慢慢了解了vector、covector和Tensor product 之后我们再回过头来看这个张量的最佳定义吧!

 

第一章(完) 下一章会就vector、covector等进行详细的讲解。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值