张量入门(Tensor for Beginners)(三)

第二章 从几个例子来认识张量

2.1 前向变换和后向变换(Forward&Backward Transformations)

        现在,我们有平面上的两组基:

       \centering Old\ Basis &:\{\overrightarrow{e}_1,\overrightarrow{e}_2}\} \\ \\ \\ New\ Basis &:\{\widetilde{\overrightarrow{e}_1},\widetilde{\overrightarrow{e}_2}}\}

        从Old Basis到New Basis的变换称为Forward,从New Basis到Old Basis的变换称为Backward。这两组基之间有如下关系:

\begin{matrix} \widetilde{\overrightarrow{e}_1}= 2\overrightarrow{e}_1+1\overrightarrow{e}_2 \qquad \qquad \overrightarrow{e}_1=\frac{1}{4}\widetilde{\overrightarrow{e}_1} +(-1)\widetilde{\overrightarrow{e}_2} \\ \widetilde{\overrightarrow{e}_2} = -\frac{1}{2}\overrightarrow{e}_1+\frac{1}{4}\overrightarrow{e}_2 \qquad \qquad \overrightarrow{e}_2=\frac{1}{2}\widetilde{\overrightarrow{e}_1} +2\widetilde{\overrightarrow{e}_2} \end{matrix}

所以,它们之间的变换矩阵如下:

F=\begin{bmatrix} 2 & -\frac{1}{2} \\ 1 & \frac{1}{4} \end{bmatrix} \qquad \qquad B=\begin{bmatrix} \frac{1}{4} & \frac{1}{2} \\ -1 & 2\end{bmatrix}

其中,F表示Forward transformation matrix,B表示Backward transformation matrix。将上式中的两个矩阵相乘有:

FB=BF=I \Rightarrow B=F^{-1}

        将其中的数字抽象为数学符号,有:

\begin{matrix} \widetilde{\overrightarrow{e}_1} = F_{11}\overrightarrow{e}_1+F_{21}\overrightarrow{e}_2 \\ \widetilde{\overrightarrow{e}_2} = F_{12}\overrightarrow{e}_1+F_{22}\overrightarrow{e}_2 \end{matrix}              F=\begin{bmatrix} F_{11} & F_{21} \\ F_{12}& F_{22} \end{bmatrix}

扩展到n维向量空间,有:

\begin{matrix} \widetilde{\overrightarrow{e}_1} = F_{11}\overrightarrow{e}_1+F_{21}\overrightarrow{e}_2 + \cdots + F_{n1}\overrightarrow{e}_n \\ \widetilde{\overrightarrow{e}_2} = F_{12}\overrightarrow{e}_1+F_{22}\overrightarrow{e}_2+ \cdots + F_{n2}\overrightarrow{e}_n \\ \vdots \\ \widetilde{\overrightarrow{e}_n} = F_{1n}\overrightarrow{e}_1+F_{2n}\overrightarrow{e}_2+ \cdots + F_{nn}\overrightarrow{e}_n \end{matrix} \qquad \qquad F = \begin{bmatrix} F_{11} & F_{12} & \cdots & F_{1n} \\ F_{21} & F_{22} & \cdots & F_{2n} \\ \vdots & \vdots & &\vdots\\ F_{n1} & F_{n2} & \cdots & F_{nn} \\ \end{bmatrix}

所以,有:

\widetilde{\overrightarrow{e}_i} = \sum_{j=1}^{n}F_{ji}\overrightarrow{e}_j

这里其实就是线性代数中的基变换和坐标变换,可以参考中国科学技术大学出版社的线性代数一书4.4节。不过这个变换是简单的,有线性代数基础的同学应该不难理解。

        同理,对于Backward transformation matrix也有类似的结论:

\overrightarrow{e}_i= \sum_{j=1}^{n}B_{ji}\widetilde{\overrightarrow{e}_j}

由此可推得:

\begin{matrix} \widetilde{\overrightarrow{e}_j}= \sum_{k=1}^{n}F_{kj}\overrightarrow{e}_k \\ \overrightarrow{e}_i= \sum_{j=1}^{n}B_{ji}\widetilde{\overrightarrow{e}_j} \end{matrix} \qquad \Rightarrow \qquad \overrightarrow{e}_i= \sum_{j=1}^{n}B_{ji}\sum_{k=1}^{n}F_{kj}\overrightarrow{e}_k=\sum_{j=1}^{n}\sum_{k=1}^{n}B_{ji}F_{kj}\overrightarrow{e}_k

由左右两边相等可知:

\sum_{j=1}^{n}\sum_{k=1}^{n}B_{ji}F_{kj}=\left\{\begin{matrix} 1 &if\ i=k \\ 0& if\ i\neq k \end{matrix}\right. =diag\{1,1,\cdots,1\}=I

        将上述这种符号简化可得Kronecker Delta:

\delta_{ij}=\left\{\begin{matrix} 1 &if\ i=k \\ 0& if\ i\neq k \end{matrix}\right.

下一节,将会见到tensor的第一个例子。

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值