神经网络及其在点云中的应用

本文介绍了神经网络的基本模块,包括输入层、隐藏层和输出层,并详细讲解了传统人工神经网络和卷积神经网络的应用。对于非网格结构的点云数据,文章探讨了如何利用神经网络进行处理,强调了平移、旋转和排列不变性的重要性。
摘要由CSDN通过智能技术生成

目录

1.传统的人工神经网络(也叫作多层感知机)分为几大模块
2. 卷积神经网络(也叫作多层感知机)分为几大模块?
3.基于点云的神经网络
神经网络可以分为生物神经网络和人工神经网络。我们通常在机器学习领域提到的神经网络都指的是人工神经网络。

1.传统的人工神经网络(也叫作多层感知机)分为几大模块

举一个实际的例子来理解神经网络:假如我们有一个有关于房价的数据集,这个数据集中有6个样本,每个样本的特征是房屋的面积、地区富裕度、卧室数量,而样本的标签就是房屋的价格,此时我们需要一个能够拟合这个数据集的函数,并且能够通过这个函数根据房屋的面积来预测房价。
于是我们可以构建下面的神经网络:每一个圆圈代表一个神经元,用于储存样本的特征和预测结果。
在这里插入图片描述
所以神经网络最基本的模块可以简单理解为:输入层、函数(隐藏层)、输出层。
注意针对不同的数据集和任务,输入、输出的神经元个数不同。比如,若数据集中还提供了房屋是否带装修这一特征&#

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值