【单变量输入多步预测】基于TCN-BiGRU-Attention的风电功率预测研究(Matlab代码实现)

        💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、模型结构与原理

1. 时间卷积神经网络(TCN)

2. 双向门控循环单元(BiGRU)

3. 注意力机制(Attention)

三、研究步骤与方法

四、研究成果与应用

五、未来展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

针对【单变量输入多步预测】基于TCN-BiGRU-Attention的风电功率预测研究,我们可以从以下几个方面进行详细阐述:

一、研究背景与意义

风能作为一种清洁、可再生的能源,在全球能源结构转型中发挥着重要作用。然而,风电功率受多种气象因素影响,如风速、风向、温度等,具有显著的波动性和不确定性。准确预测风电功率对于电力系统的调度、优化风电场的运行以及促进风电的并网消纳具有重要意义。特别是单变量输入多步预测,即仅使用风速等单一变量作为输入,预测未来多个时间点的风电功率,对于电力系统的实时调度和决策支持尤为关键。

二、模型结构与原理

1. 时间卷积神经网络(TCN)
  • 作用:TCN通过卷积层和膨胀卷积等结构,有效地提取时间序列中的局部和全局特征,保留时间信息。它特别适用于处理长序列数据,并能够处理任意长度的输入序列,保持输出序列与输入序列长度相同。
  • 特点:TCN能够捕捉时间序列中的长期依赖关系,且不受输入序列长度的限制,非常适合用于风电功率预测等时间序列预测任务。
2. 双向门控循环单元(BiGRU)
  • 作用:BiGRU由两个方向的GRU(门控循环单元)组成,能够同时捕捉序列的正向和反向信息,从而更全面地学习序列的长期依赖关系。
  • 特点:在处理时间序列数据时,BiGRU能够同时考虑过去和未来的信息,提高预测的精度和稳定性。这对于风电功率预测来说尤为重要,因为风电功率的变化往往与过去和未来的气象条件都密切相关。
3. 注意力机制(Attention)
  • 作用:注意力机制允许模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在风电功率预测中,注意力机制可以帮助模型更加关注对预测结果影响较大的时间步长。
  • 实现方式:通常将注意力机制与BiGRU的输出相结合,通过对不同时间步长的输出进行加权处理,得到最终的预测结果。

三、研究步骤与方法

  1. 数据准备:收集风电场的风速等历史数据,并进行预处理操作,包括数据清洗、去噪、插值、归一化等,以消除异常值和缺失值对预测结果的影响。
  2. 模型构建:根据TCN-BiGRU-Attention模型的结构,使用MATLAB或Python等编程语言构建预测模型。模型主要包括TCN层、BiGRU层和Attention层。
  3. 模型训练:使用准备好的数据集对模型进行训练。在训练过程中,通过反向传播算法更新网络参数,并采用优化算法(如Adam、RMSprop等)加速训练过程并防止过拟合。
  4. 结果评估:使用测试集数据对训练好的模型进行评估,计算预测误差等性能指标(如均方误差MSE、平均绝对误差MAE等)。
  5. 优化与改进:根据评估结果对模型进行优化和改进,如调整模型参数、引入新的特征等。此外,还可以尝试将TCN-BiGRU-Attention模型与其他优化算法(如遗传算法、粒子群算法等)相结合,进一步提高预测精度和效率。

四、研究成果与应用

基于TCN-BiGRU-Attention的风电功率预测模型在多个风电场的应用中取得了显著成果。该模型能够准确预测风电功率的变化趋势和波动范围,特别是在单变量输入多步预测的场景下表现出色。这为电力系统提供了可靠的预测数据支持,有助于实现风电场的安全稳定运行和电网的优化调度。

五、未来展望

随着深度学习技术的不断发展和完善,基于TCN-BiGRU-Attention的风电功率预测研究将不断深入和完善。未来研究可以进一步探索模型的优化算法、特征提取方法和预测精度提升策略等方面的问题。同时,结合更多的数据源(如气象数据、地理数据、电网运行数据等)进行多源数据融合,有望进一步提高预测模型的准确性和鲁棒性。此外,开发高效的实时预测算法和平台也是未来的一个重要研究方向。

📚2 运行结果

部分代码:

layers0 = [ ...
    % 输入特征
    sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置
    sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
    % CNN特征提取
    convolution2dLayer([2,1],4,'Stride',[1,1],'name','conv1')  %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
    batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
    reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
      % 池化层
    maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
    % 展开层
    sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复
    %平滑层
    flattenLayer('name','flatten')
    
    lstmLayer(25,'Outputmode','last','name','hidden1') 
    dropoutLayer(0.2,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入

    fullyConnectedLayer(outdim,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %
    regressionLayer('Name','output')    ];
    
lgraph0 = layerGraph(layers0);
lgraph0 = connectLayers(lgraph0,'fold/miniBatchSize','unfold/miniBatchSize');


%% Set the hyper parameters for unet training
options0 = trainingOptions('adam', ...                 % 优化算法Adam
    'MaxEpochs', 150, ...                            % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', 0.01, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod',70, ...                   % 训练100次后开始调整学习率
    'LearnRateDropFactor',0.01, ...                    % 学习率调整因子
 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.

[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值