(实验评估)Relocalization, Global Optimizition and Map Merging for Monocular Visual-Inertial SLAM

V. Experiment Results

设计的系统分别在一些公开数据集和外部环境进行了验证。在公开数据集上与2017年发表在IROS上的一片文章“Keyframe-Based Visual-Inertial Oline SLAM with Relocalization”https://arxiv.org/pdf/1702.02175.pdf这篇文章进行了性能的比较。外部环境的实验主要是为了说明系统大尺度环境使用的可行性。
A. Public Dataset
使用的数据集: the EuRoC MAV Visual-Inertial Datasets.
在图9中,我们与groundtruth和没有回环检测的VIO进行了对比。结果表明我们的重定位和全局位姿图优化大大的增加了纯VIO的精确性。为了定量分析,我们将系统与另一种最先进的SLAM工作VI SLAM进行了比较。

注:这里写的个人认为是这样一个思路,首先是与纯VIO进行比较,证明的确有作用,然后是与 VI SLAM进行比较,进行了一个定量的分析

在这里插入图片描述
在定量的试验中是以绝对轨迹误差(ATE)进行比较的。在TABLE1中展示如下:

在这里插入图片描述

实验中将五个厂房的序列融合成一个地图,据所知,这是第一个试图拼接不同视觉惯性序列在一起的工作。
我们仅仅将第一帧固定在第一个序列当中,把它的位姿和偏航都设置为零。然后我们将新的序列一个一个的融合进之前的地图中。形成的轨道在图10中展示如下:

在这里插入图片描述

B. Large-scale Outdoor Environment

使用设备:集成单目相机和IMU的传感器

参数:
单目相机:Matrix Vision mvBlueFOX-MLC200w,20hz,752*480 resolution
IMU: ADXL278 and ADXRS290, 400hz
DJI A3 controller

相机和IMU是硬件同步的。相机的内参是线下标定的,相机与IMU之间的外参是线上标定的。两个室外的序列是有一个人在不同时刻行走在校园采集的。第一个序列大约740m,第二个序列有540m。然后我们将这个地图存储起来。在任意一个不知道的位置在这两个序列中开始。每一个关键帧被用来回环检测对之前建好的地图。一旦回环被检测出来,我们进行重定位和全局优化,将这两幅地图融合成一张地图(将740m的序列和540m的序列融合成一个)。

处理设备:
台式电脑,i7-3770 CPU, 3.4GHz.

处理时间表:
在这里插入图片描述
具体在执行的时候,对每一个新来的帧进行回环检测。只有当新的回环检测到的时候,才进行重定位和位姿图的优化。

在这里插入图片描述

图13是一个关于轨迹的图。上边的图展示了两个序列各自的轨道,黄色的代表序列1的轨道,充当之前建好的地图。蓝色代表序列2,作为当前建立的地图。红色的线代表两幅地图之间的连接,连接两个轨道。
下边的图代表融合之后的结果。两幅图经过全局位姿图优化紧密的结合在一起。为了更直观的目的,我们使整个轨迹与谷歌地图对齐,正如图14所示。轨迹很好的匹配谷歌地图,验证提出的系统的有效性。

在这里插入图片描述

VI. Conclusion

在这篇论文中,我们提出了一个单目视觉惯性SLAM系统,它有重定位和位姿图优化的能力,从而达到了实时全局一致性的的目标当有回环发生的时候。我们的系统能够在建好的地图中重新定位相机的位置,将当前的图与之前的图通过位姿图优化的方法进行融合。整个系统有效的保存和加载位姿图,有着复用之前结果的能力。
我们的系统有潜在的对大城市建图的能力。在未来,我们想采集数据并建立在多个分布装置的局部地图。然后融合所有局部地图成为一个大的全局地图。最后,我们能够重定位和得到绝对位置在这个全局地图中。

个人观点:将大块区域的多个分布的局部图精准的拼成一个全局的图是值得研究的点。尤其是面对繁重的任务,举行大型活动,活动场景又大的时候,那么多个机器人共同写作协作是必然的。就需要分区域去让每个机器人进行任务的执行,实现任务的细分和高效的完成。那么任务完成的基础就是对大场景的环境建图以及地图的共享,这就会涉及到怎么将机器人的地图进行整合,以及如何建立更有效的全局地图,为机器人共享共用!

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页