Ml strategy
文章目录
Single Numble Evaluation Metric
Precision : n% actually are …
Recall : n% was correctly recognized
F1 score : 2 1 P + 1 R \frac{2}{\frac{1}{P}+\frac{1}{R}} P1+R12
optimizing and satisficing metric
cost = accuracy - 0.5 * running time
N matrics : 1 optimizing , (N-1) reach threshold (satisficing)
if doing well on your metric + dev/test set does not crrespond to doing welll on your application , change your metric and/or dev/test set.
Improving model performance
Two fundamental
- fit the training set well
- the training set performance generalizes pretty well to the dev/test set
Reduce bias and variance
human lever <–> training error <–> dev error (avoidable bias / variance)
Avoidable bias
- Train bigger model
- Train longer/better optimization algorithms
- NN architecture/hyperparameters search
variance
- more data
- regularization
- NN architecture/hyperparameters search
error analysis
ways
- dev examples to evalueate ideas ( 5/100 -> |10%->9.5% )
- evaluate multiple ideas in parallel
Incorrectly labled examples
diffenrent distributions
human leber <–> training error <–> training-dev error <–> dev/test error
(avoidable bias -> variance -> data mismatch)
address data mismatch
- understand diffenrence between training and dev/test sets
- collect more data similar to dev/test sets
Transfer learning
- the same input
- a lot more data for A than B
- low lever features of A
change the w [ l ] ; b [ l ] w^{[l]}; b^{[l]} w[l];b[l] to pre-training (initial the weights)and pine-tuning (a large number of datas)
Multi-task learning
change the y a n d y ^ y\;and\;\hat y yandy^ dimension
end-to-end
more data learn well
audio --> transcript