评估与改进机器学习模型

Ml strategy

Single Numble Evaluation Metric

Precision : n% actually are …

Recall : n% was correctly recognized

F1 score : 2 1 P + 1 R \frac{2}{\frac{1}{P}+\frac{1}{R}} P1+R12

optimizing and satisficing metric

cost = accuracy - 0.5 * running time

N matrics : 1 optimizing , (N-1) reach threshold (satisficing)

if doing well on your metric + dev/test set does not crrespond to doing welll on your application , change your metric and/or dev/test set.

Improving model performance

Two fundamental

  1. fit the training set well
  2. the training set performance generalizes pretty well to the dev/test set

Reduce bias and variance

human lever <–> training error <–> dev error (avoidable bias / variance)

Avoidable bias
  • Train bigger model
  • Train longer/better optimization algorithms
  • NN architecture/hyperparameters search
variance
  • more data
  • regularization
  • NN architecture/hyperparameters search

error analysis

ways

  • dev examples to evalueate ideas ( 5/100 -> |10%->9.5% )
  • evaluate multiple ideas in parallel

Incorrectly labled examples

diffenrent distributions

human leber <–> training error <–> training-dev error <–> dev/test error

(avoidable bias -> variance -> data mismatch)

address data mismatch

  • understand diffenrence between training and dev/test sets
  • collect more data similar to dev/test sets

Transfer learning

  • the same input
  • a lot more data for A than B
  • low lever features of A

change the w [ l ] ; b [ l ] w^{[l]}; b^{[l]} w[l];b[l] to pre-training (initial the weights)and pine-tuning (a large number of datas)

Multi-task learning

change the y    a n d    y ^ y\;and\;\hat y yandy^ dimension

end-to-end

more data learn well

audio --> transcript

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值