NeurIPS 2024于2024年12月10号-12月15号在加拿大温哥华举行(Vancouver, Canada),录取率25.8%
本文总结了NeurIPS 2024有关时间序列(time series data)的相关论文
时间序列Topic:预测,插补,分类,生成,因果分析,异常检测,LLM以及基础模型等内容。总计61篇,其中正会55篇,D&B Track6篇
预测:1-29
异常检测:30,57
分类:32,54,55
表示学习:37,39,40
生成:31,41,42,60
时序分析:33,34,36
大语言模型:7,10,24,52
基础模型:16,29,35,53
扩散模型:1,31,42,43
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】
Retrieval-Augumented Diffusion Models for Time Series Forecasting
Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective
Ada-MSHyper: Adaptive Multi-Scale Hypergraph Transformer for Time Series Forecasting
FilterNet: Harnessing Frequency Filters for Time Series Forecasting
Frequency Adaptive Normalization For Non-stationary Time Series Forecasting
Rethinking the Power of Timestamps for Robust Time Series Forecasting: A Global-Local Fusion Perspective
AutoTimes: Autoregressive Time Series Forecasters via Large Language Models
DDN: Dual-domain Dynamic Normalization for Non-stationary Time Series Forecasting
BackTime: Backdoor Attacks on Multivariate Time Series Forecasting
Are Language Models Actually Useful for Time Series Forecasting?
Rethinking Fourier Transform for Long-term Time Series Forecasting: A Basis Functions Perspective
Introducing Spectral Attention for Long-Range Dependency in Time Series Forecasting
Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting
Structured Matrix Basis for Multivariate Time Series Forecasting with Interpretable Dynamics
DeformableTST: Transformer for Time Series Forecasting without Over-reliance on Patching
Time-FFM: Towards LM-Empowered Federated Foundation Model for Time Series Forecasting
PGN: The RNN’s New Successor is Effective for Long-Range Time Series Forecasting
SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion
Multivariate Probabilistic Time Series Forecasting with Correlated Errors
CycleNet: Enhancing Time Series Forecasting through Modeling Periodic Patterns
Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting
CondTSF: One-line Plugin of Dataset Condensation for Time Series Forecasting
Scaling Law for Time Series Forecasting
From News to Forecast: Integrating Event Analysis in LLM-Based Time Series Forecasting with Reflection
From Similarity to Superiority: Channel Clustering for Time Series Forecasting
TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables
ElasTST: Towards Robust Varied-Horizon Forecasting with Elastic Time-Series Transformer
Are Self-Attentions Effective for Time Series Forecasting?
Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series
SARAD: Spatial Association-Aware Anomaly Detection and Diagnosis for Multivariate Time Series
Utilizing Image Transforms and Diffusion Models for Generative Modeling of Short and Long Time Series
Con4m: Context-aware Consistency Learning Framework for Segmented Time Series Classification
Peri-midFormer: Periodic Pyramid Transformer for Time Series Analysis
Shape analysis for time series
UNITS: A Unified Multi-Task Time Series Model
Large Pre-trained time series models for cross-domain Time series analysis tasks
“Segment, Shuffle, and Stitch: A Simple Mechanism for Improving Time-Series Representations”
Task-oriented Time Series Imputation Evaluation via Generalized Representers
Exploiting Representation Curvature for Boundary Detection in Time Series
Learning diverse causally emergent representations from time series data
SDformer: Similarity-driven Discrete Transformer For Time Series Generation
FIDE: Frequency-Inflated Conditional Diffusion Model for Extreme-Aware Time Series Generation
ANT: Adaptive Noise Schedule for Time Series Diffusion Models
Trajectory Flow Matching with Applications to Clinical Time Series Modelling
Chimera: Effectively Modeling Multivariate Time Series with 2-Dimensional State Space Models
Reinforced Cross-Domain Knowledge Distillation on Time Series Data
Boosting Transferability and Discriminability for Time Series Domain Adaptation
Towards Editing Time Series
Conformalized Time Series with Semantic Features
ChronoEpilogi: Scalable Time Series Selection with Multiple Solutions
Graph Neural Flows for Unveiling Systemic Interactions Among Irregularly Sampled Time Series
Tri-Level Navigator: LLM-Empowered Tri-Level Learning for Time Series OOD Generalization
UniMTS: Unified Pre-training for Motion Time Series
Medformer: A Multi-Granularity Patching Transformer for Medical Time-Series Classification
Abstracted Shapes as Tokens - A Generalizable and Interpretable Model for Time-series Classification
D&B Track
IncomeSCM: From tabular data set to time-series simulator and causal estimation benchmark
The Elephant in the Room: Towards A Reliable Time-Series Anomaly Detection Benchmark
Building Timeseries Dataset: Empowering Large-Scale Building Analytics
Time-MMD: A New Multi-Domain Multimodal Dataset for Time Series Analysis
TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series
ProbTS: Benchmarking Point and Distributional Forecasting across Diverse Prediction Horizons
1 Retrieval-Augumented Diffusion Models for Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/94339
作者:Jingwei Liu, Ling Yang, Hongyan Li, Shenda Hong
关键词:预测,扩散模型,检索增强
2 Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective
链接:https://neurips.cc/virtual/2024/poster/94220
arXiv:https://arxiv.org/abs/2402.11463
作者:Jiaxi Hu, Yuehong Hu, Wei Chen, Ming Jin, Shirui Pan, Qingsong Wen, Yuxuan Liang
关键词:长时预测
Attraos
3 Ada-MSHyper: Adaptive Multi-Scale Hypergraph Transformer for Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95175
作者:Zongjiang Shang, Ling Chen, Binqing Wu, Dongliang Cui
关键词:预测,多尺度,超图,Transformer
4 FilterNet: Harnessing Frequency Filters for Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/93257
作者:Kun Yi, Wei Fan, Qi Zhang, Hui He, Jingru Fei, Shufeng Hao, Defu Lian
关键词:预测,频率过滤
5 Frequency Adaptive Normalization For Non-stationary Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95063
arXiv:https://arxiv.org/abs/2409.20371
作者:Weiwei Ye · Songgaojun Deng · Qiaosha Zou · Ning Gui
关键词:预测,非平稳
FAN
6 Rethinking the Power of Timestamps for Robust Time Series Forecasting: A Global-Local Fusion Perspective
链接:https://neurips.cc/virtual/2024/poster/96026
arXiv:https://arxiv.org/abs/2409.18696
作者:Chengsen Wang · Qi Qi · Jingyu Wang · Haifeng Sun · Zirui Zhuang · Jinming Wu · Jianxin Liao
关键词:预测,稳健性
GLAFF
7 AutoTimes: Autoregressive Time Series Forecasters via Large Language Models
链接:https://neurips.cc/virtual/2024/poster/95975
arXiv:https://arxiv.org/abs/2402.02370
作者:Yong Liu · Guo Qin · Xiangdong Huang · Jianmin Wang · Mingsheng Long
关键词:预测,LLM,自回归
AutoTimes
8 DDN: Dual-domain Dynamic Normalization for Non-stationary Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95167
作者:Tao Dai · Beiliang Wu · Peiyuan Liu · Naiqi Li · Xue Yuerong · Shu-Tao Xia · Zexuan Zhu
关键词:预测,非平稳,双域
9 BackTime: Backdoor Attacks on Multivariate Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95645
arXiv:https://arxiv.org/abs/2410.02195
作者:Xiao Lin · Zhining Liu · Dongqi Fu · Ruizhong Qiu · Hanghang Tong
关键词:预测,后门攻击
10 [Spotlight] Are Language Models Actually Useful for Time Series Forecasting?
链接:https://neurips.cc/virtual/2024/poster/96085
arXiv:https://arxiv.org/abs/2410.02195
作者:Mingtian Tan · Mike Merrill · Vinayak Gupta · Tim Althoff · Tom Hartvigsen
关键词:预测,LLM
备注:大胆之作,去掉LLM效果更好了。
11 Rethinking Fourier Transform for Long-term Time Series Forecasting: A Basis Functions Perspective
链接:https://neurips.cc/virtual/2024/poster/96209
作者:Runze Yang · Longbing Cao · JIE YANG · li jianxun
关键词:长时预测,傅里叶变换
12 Introducing Spectral Attention for Long-Range Dependency in Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/94305
作者:Bong Gyun Kang · Dongjun Lee · HyunGi Kim · Dohyun Chung · Sungroh Yoon
关键词:预测,谱域注意力,长期依赖
13 Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/93133
arXiv:https://arxiv.org/abs/2401.11929
作者:Jinliang Deng · Feiyang Ye · Du Yin · Xuan Song · Ivor Tsang · Hui Xiong
关键词:长时预测
SSCNN
14 Structured Matrix Basis for Multivariate Time Series Forecasting with Interpretable Dynamics
链接:https://neurips.cc/virtual/2024/poster/94383
作者:Xiaodan Chen · Xiucheng Li · Xinyang Chen · Zhijun Li
关键词:预测,可解释性,动态性
15 DeformableTST: Transformer for Time Series Forecasting without Over-reliance on Patching
链接:https://neurips.cc/virtual/2024/poster/96221
作者:Donghao Luo · Xue Wang
关键词:预测,Transformer,Patch
16 Time-FFM: Towards LM-Empowered Federated Foundation Model for Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95835
arXiv:https://arxiv.org/abs/2405.14252
作者:Qingxiang Liu · Xu Liu · Chenghao Liu · Qingsong Wen · Yuxuan Liang
关键词:预测,联邦学习,基础模型
Time-FFM
17 PGN: The RNN’s New Successor is Effective for Long-Range Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/92992
arXiv:https://arxiv.org/abs/2409.17703
代码:https://github.com/Water2sea/TPGN
作者:Yuxin Jia · Youfang Lin · Jing Yu · Shuo Wang · Tianhao Liu · Huaiyu Wan
关键词:长时预测,RNN
PGN
18 SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion
链接:https://neurips.cc/virtual/2024/poster/96390
arXiv:https://arxiv.org/abs/2404.14197
代码:https://github.com/Secilia-Cxy/SOFTS
作者:Han Lu · Xu-Yang Chen · Han-Jia Ye · De-Chuan Zhan
关键词:预测,MLP
19 Multivariate Probabilistic Time Series Forecasting with Correlated Errors
链接:https://neurips.cc/virtual/2024/poster/94440
arXiv:https://arxiv.org/abs/2409.18479
作者:Zhihao Zheng · Lijun Sun
关键词:概率预测,不确定性量化
20 CycleNet: Enhancing Time Series Forecasting through Modeling Periodic Patterns
链接:https://neurips.cc/virtual/2024/poster/94391
arXiv:https://arxiv.org/abs/2409.18479
代码:https://github.com/ACAT-SCUT/CycleNet
作者:Shengsheng Lin · Weiwei Lin · Xinyi Hu · Wentai Wu · Ruichao Mo · Haocheng Zhong
关键词:长时预测,周期建模
CycleNet
21 Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95988
作者:Romain Ilbert · Malik Tiomoko · Cosme Louart · Ambroise Odonnat · Vasilii Feofanov · Themis Palpanas · Ievgen Redko
关键词:预测,多任务回归,随机矩阵理论
22 CondTSF: One-line Plugin of Dataset Condensation for Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95627
arXiv:https://arxiv.org/abs/2406.02131
代码:https://github.com/RafaDD/CondTSF
作者:Jianrong Ding · Zhanyu Liu · Guanjie Zheng · Haiming Jin · Linghe Kong
关键词:预测,插件
CondTSF
23 Scaling Law for Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/96119
arXiv:https://arxiv.org/pdf/2405.15124
代码:https://github.com/JingzheShi/ScalingLawForTimeSeriesForecasting
作者:Jingzhe Shi · Qinwei Ma · Huan Ma · Lei Li
关键词:预测,Scaling Law
24 From News to Forecast: Integrating Event Analysis in LLM-Based Time Series Forecasting with Reflection
链接:https://neurips.cc/virtual/2024/poster/93316
arXiv:https://arxiv.org/abs/2409.17515
作者:Xinlei Wang · Maike Feng · Jing Qiu · Jinjin Gu · Junhua Zhao
关键词:预测,LLM,事件融合
25 From Similarity to Superiority: Channel Clustering for Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95539
arXiv:https://arxiv.org/abs/2404.01340
作者:Jialin Chen · Jan Eric Lenssen · Aosong Feng · Weihua Hu · Matthias Fey · Leandros Tassiulas · Jure Leskovec · Rex Ying
关键词:预测,通道聚类
CCM
26 TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables
链接:https://neurips.cc/virtual/2024/poster/95770
arXiv:https://arxiv.org/abs/2402.19072
作者:Yuxuan Wang · Haixu Wu · Jiaxiang Dong · Guo Qin · Haoran Zhang · Yong Liu · Yun-Zhong Qiu · Jianmin Wang · Mingsheng Long
关键词:预测,外生变量,Transformer
TimeXer
27 ElasTST: Towards Robust Varied-Horizon Forecasting with Elastic Time-Series Transformer
链接:https://neurips.cc/virtual/2024/poster/93264
作者:Jiawen Zhang · Shun Zheng · Xumeng Wen · Xiaofang Zhou · Jiang Bian · Jia Li
关键词:预测,稳健性,Patch
28 Are Self-Attentions Effective for Time Series Forecasting?
链接:https://neurips.cc/virtual/2024/poster/94012
arXiv:https://arxiv.org/abs/2405.16877
作者:Dongbin Kim · Jinseong Park · Jaewook Lee · Hoki Kim
关键词:预测,交叉注意力
29 Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series
链接:https://neurips.cc/virtual/2024/poster/96748
arXiv:https://arxiv.org/abs/2401.03955
代码:https://github.com/ibm-granite/granite-tsfm/tree/main/tsfm_public/models/tinytimemixer
Huggingface:https://huggingface.co/ibm-granite/granite-timeseries-ttm-v1
作者:Vijay Ekambaram · Arindam Jati · Pankaj Dayama · Sumanta Mukherjee · Nam Nguyen · WESLEY M GIFFORD · Chandra Reddy · Jayant Kalagnanam
关键词:零样本/少样本预测
TTMs
30 SARAD: Spatial Association-Aware Anomaly Detection and Diagnosis for Multivariate Time Series
链接:https://neurips.cc/virtual/2024/poster/94119
作者:Zhihao Dai · Ligang He · Shuanghua Yang · Matthew Leeke
关键词:异常检测,空间关联感知
31 Utilizing Image Transforms and Diffusion Models for Generative Modeling of Short and Long Time Series
链接:https://neurips.cc/virtual/2024/poster/96819
作者:Ilan Naiman · Nimrod Berman · Itai Pemper · Idan Arbiv · Gal Fadlon · Omer Asher · Omri Azencot
关键词:分类(长时),判别(短时)
32 Con4m: Context-aware Consistency Learning Framework for Segmented Time Series Classification
链接:https://neurips.cc/virtual/2024/poster/93973
arXiv:https://arxiv.org/abs/2408.00041
作者:Junru Chen · Tianyu Cao · Jing Xu · Jiahe Li · Zhilong Chen · Tao Xiao · YANG YANG
关键词:分类
Con4m
33 Peri-midFormer: Periodic Pyramid Transformer for Time Series Analysis
链接:https://neurips.cc/virtual/2024/poster/96575
作者:Qiang Wu · Gechang Yao · Zhixi Feng · Yang Shuyuan
关键词:分析,Transformer
34 Shape analysis for time series
链接:https://neurips.cc/virtual/2024/poster/95718
作者:Thibaut Germain · Samuel Gruffaz · Charles Truong · Alain Durmus · Laurent Oudre
关键词:分析,生理时序,无监督
35 UNITS: A Unified Multi-Task Time Series Model
链接:https://neurips.cc/virtual/2024/poster/93709
arXiv:https://arxiv.org/abs/2403.00131
代码:https://github.com/mims-harvard/UniTS
作者:Shanghua Gao · Teddy Koker · Owen Queen · Tom Hartvigsen · Theodoros Tsiligkaridis · Marinka Zitnik
关键词:多任务,基础模型
36 Large Pre-trained time series models for cross-domain Time series analysis tasks
链接:https://neurips.cc/virtual/2024/poster/93205
arXiv:https://arxiv.org/abs/2311.11413
代码:https://github.com/kage08/SegmentTS/
作者:Harshavardhan Prabhakar Kamarthi · B. Aditya Prakash
关键词:分析,跨域,预训练
LPTM
37 Segment, Shuffle, and Stitch: A Simple Mechanism for Improving Time-Series Representations
链接:https://neurips.cc/virtual/2024/poster/92935
arXiv:https://arxiv.org/abs/2405.20082
代码:https://github.com/shivam-grover/S3-TimeSeries
作者:Shivam Grover · Amin Jalali · Ali Etemad
关键词:表示学习
S3
38 Task-oriented Time Series Imputation Evaluation via Generalized Representers
链接:https://neurips.cc/virtual/2024/poster/93717
代码:https://github.com/hkuedl/Task-Oriented-Imputation
作者:Zhixian Wang · Linxiao Yang · Liang Sun · Qingsong Wen · Yi Wang
关键词:插补,评估方法
39 Exploiting Representation Curvature for Boundary Detection in Time Series
链接:https://neurips.cc/virtual/2024/poster/94837
作者:Yooju Shin · Jaehyun Park · Susik Yoon · Hwanjun Song · Byung Suk Lee · Jae-Gil Lee
关键词:边界检测
40 Learning diverse causally emergent representations from time series data
链接:https://neurips.cc/virtual/2024/poster/92973
作者:David McSharry · Christos Kaplanis · Fernando Rosas · Pedro A.M Mediano
关键词:因果涌现
41 SDformer: Similarity-driven Discrete Transformer For Time Series Generation
链接:https://neurips.cc/virtual/2024/poster/94642
作者:Zhicheng Chen · FENG SHIBO · Zhong Zhang · Xi Xiao · Xingyu Gao · Peilin Zhao
关键词:时间序列生成,离散Transformer
42 FIDE: Frequency-Inflated Conditional Diffusion Model for Extreme-Aware Time Series Generation
链接:https://neurips.cc/virtual/2024/poster/96595
作者:Asadullah Hill Galib · Pang-Ning Tan · Lifeng Luo
关键词:时间序列生成,条件扩散模型
43 ANT: Adaptive Noise Schedule for Time Series Diffusion Models
链接:https://neurips.cc/virtual/2024/poster/96850
作者:Seunghan Lee · Kibok Lee · Taeyoung Park
关键词:扩散模型,自适应噪声
44 Trajectory Flow Matching with Applications to Clinical Time Series Modelling
链接:https://neurips.cc/virtual/2024/poster/94212
作者:Xi (Nicole) Zhang · Yuan Pu · Yuki Kawamura · Andrew Loza · Yoshua Bengio · Dennis Shung · Alexander Tong
关键词:建模,临床时间序列,流匹配
45 Chimera: Effectively Modeling Multivariate Time Series with 2-Dimensional State Space Models
链接:https://neurips.cc/virtual/2024/poster/93680
arXiv:https://arxiv.org/abs/2406.04320
作者:Ali Behrouz · Michele Santacatterina · Ramin Zabih
关键词:建模,状态空间模型
Chimera
46 Reinforced Cross-Domain Knowledge Distillation on Time Series Data
链接:https://neurips.cc/virtual/2024/poster/93330
作者:QING XU · Min Wu · Xiaoli Li · Kezhi Mao · Zhenghua Chen
关键词:知识蒸馏,无监督域适应
47 Boosting Transferability and Discriminability for Time Series Domain Adaptation
链接:https://neurips.cc/virtual/2024/poster/94429
作者:Mingyang Liu · Xinyang Chen · Yang Shu · Xiucheng Li · Weili Guan · Liqiang Nie
关键词:域适应,迁移性,判别性
48 Towards Editing Time Series
链接:https://neurips.cc/virtual/2024/poster/93468
作者:Baoyu Jing · Shuqi Gu · Tianyu Chen · Zhiyu Yang · Dongsheng Li · Jingrui He · Kan Ren
关键词:时间序列编辑,合成时间序列
49 Conformalized Time Series with Semantic Features
链接:https://neurips.cc/virtual/2024/poster/95653
作者:Baiting Chen · Zhimei Ren · Lu Cheng
关键词:共形预测,分布偏移
50 ChronoEpilogi: Scalable Time Series Selection with Multiple Solutions
链接:https://neurips.cc/virtual/2024/poster/93042
作者:Etienne Vareille · Michele Linardi · Vassilis Christophides · Ioannis Tsamardinos
关键词:时间序列选择
51 Graph Neural Flows for Unveiling Systemic Interactions Among Irregularly Sampled Time Series
链接:https://neurips.cc/virtual/2024/poster/93348
作者:Giangiacomo Mercatali · Andre Freitas · Jie Chen
关键词:不规则时间序列,因果,常微分方程
52 Tri-Level Navigator: LLM-Empowered Tri-Level Learning for Time Series OOD Generalization
链接:https://neurips.cc/virtual/2024/poster/94588
作者:Chengtao Jian · Kai Yang · Yang Jiao
关键词:分布外泛化,LLM
53 UniMTS: Unified Pre-training for Motion Time Series
链接:https://neurips.cc/virtual/2024/poster/96073
作者:Xiyuan Zhang · Diyan Teng · Ranak Roy Chowdhury · Shuheng Li · Dezhi Hong · Rajesh Gupta · Jingbo Shang
关键词:运动时间序列,预训练
54 Medformer: A Multi-Granularity Patching Transformer for Medical Time-Series Classification
链接:https://neurips.cc/virtual/2024/poster/93940
arXiv:https://arxiv.org/abs/2405.19363
代码:https://github.com/DL4mHealth/Medformer
作者:Yihe Wang · Nan Huang · Taida Li · Yujun Yan · Xiang Zhang
关键词:分类,医疗时间序列
Medformer
55 Abstracted Shapes as Tokens - A Generalizable and Interpretable Model for Time-series Classification
链接:https://neurips.cc/virtual/2024/poster/93522
作者:Yunshi Wen · Tengfei Ma · Lily Weng · Lam Nguyen · Anak Agung Julius
关键词:分类,可解释性,泛化性
D&B Track
56 IncomeSCM: From tabular data set to time-series simulator and causal estimation benchmark
链接:https://neurips.cc/virtual/2024/poster/97776
arXiv:https://arxiv.org/abs/2405.16069
代码:https://github.com/Healthy-AI/IncomeSCM
作者:Fredrik Johansson(独立作者)
关键词:因果估计,模拟器
IncomeSCM
57 The Elephant in the Room: Towards A Reliable Time-Series Anomaly Detection Benchmark
链接:https://neurips.cc/virtual/2024/poster/97690
代码:https://github.com/TheDatumOrg/TSB-AD
作者:Qinghua Liu · John Paparrizos
关键词:异常检测,benchmark
TSB-AD
58 Building Timeseries Dataset: Empowering Large-Scale Building Analytics
链接:https://neurips.cc/virtual/2024/poster/97839
arXiv:https://arxiv.org/abs/2406.08990
代码:https://github.com/cruiseresearchgroup/DIEF_BTS
作者:Arian Prabowo · Xiachong LIN · Imran Razzak · Hao Xue · Emily Yap · Matthew Amos · Flora Salim
关键词:建筑时间序列,数据集,metadata
59 Time-MMD: A New Multi-Domain Multimodal Dataset for Time Series Analysis
链接:https://neurips.cc/virtual/2024/poster/97582
arXiv:https://arxiv.org/abs/2406.08627
library代码:https://github.com/AdityaLab/MM-TSFlib
dataset 代码:https://github.com/AdityaLab/Time-MMD
作者:Haoxin Liu · Shangqing Xu · Zhiyuan Zhao · Lingkai Kong · Harshavardhan Prabhakar Kamarthi · Aditya Sasanur · Megha Sharma · Jiaming Cui · Qingsong Wen · Chao Zhang · B. Aditya Prakash
关键词:数据集,分析,多模态,多域
Time-MMD
60 TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series
链接:https://neurips.cc/virtual/2024/poster/97532
arXiv:https://arxiv.org/abs/2305.11567
作者:Alexander Nikitin · Letizia Iannucci · Samuel Kaski
关键词:时间序列生成,合成时间序列,框架
60 TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series
链接:https://neurips.cc/virtual/2024/poster/97532
arXiv:https://arxiv.org/abs/2305.11567
作者:Alexander Nikitin · Letizia Iannucci · Samuel Kaski
关键词:时间序列生成,合成时间序列,框架
Time-MMD
61 ProbTS: Benchmarking Point and Distributional Forecasting across Diverse Prediction Horizons
链接:https://neurips.cc/virtual/2024/poster/97527
arXiv:https://arxiv.org/abs/2310.07446
代码:https://github.com/microsoft/ProbTS
作者:Jiawen Zhang · Xumeng Wen · Zhenwei Zhang · Shun Zheng · Jia Li · Jiang Bian
关键词:概率预测,benchmark
最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】