Prompt工程的本质是将人类非线性思维转化为机器可理解的线性逻辑。
这是一种从复杂到简单、从发散到收敛的思维重构过程。
我们是需要将我们熟知的思维模式,翻译成机器能够“稳定”识别的模式。
与人之间沟通不同,llm 对于上下顺序要求特别高。
从"思考"的角度来看:
人脑 = 并联电路(非线性)
特性:
- 多通道并行传输
- 高容错性但不稳定
- 需要"降压器"(工具)稳定输出,例如书写、流程图、思维导图类工具,让我们能够梳理清晰想法
AI = 串联电路(线性)
特性:
- 单通道顺序传输
- 低容错性但稳定
- 内置"稳压器"(函数)
人脑:
[思维A]──┬──[思维B]──┬──[思维C] // 并联
└──[思维D]──┘
AI:
[步骤1]──→[步骤2]──→[步骤3] // 串联
人脑思维转换为AI思维时,就像把“需求转化为程序语言”
并联(非线性) → 串联(线性)
跳跃 → 线性
发散 → 收敛
prompt的研究,跟产品设计的流程类似,还是在 产品+开发 的过程
但是让文本+图片类产品的开发成本降到足够低,扩大了“独立开发者”的范围
一、怎么样写 prompt?
写好 prompt = 流程化+用词具体+用词精准
1.流程化
流程化=拆分目标+细化步骤+简化冗余
把思考的段落,变成一条条线。
①首先来说,拆分目标
拆分目标就是把需求,拆解成一个个细小模块。
类似搭建积木的过程,积木会有不同的模块,然后组装成一个完整的积木。
一个积木的结构
├── 模块A(小袋1)
├── 模块B(小袋2)
└── 模块C(小袋3)
这是写的一个“心理分析 prompt” 呈现的结果
诉求分析:
核心诉求是寻求理解和支持,希望改善与母亲的关系
女儿正在经历自我价值感的危机
阻力分析:
母亲的否定性评价对女儿的自我认知造成严重打击
亲子关系中缺乏有效沟通和情感连接
女儿可能已形成消极的自我认知模式
推力分析:
寻求帮助的意愿表明有改变的动力
意识到这种关系模式的不健康
渴望获得认可和理解
把分析心理情况,拆成三个小目标:诉求分析+阻力分析+推力分析
心理分析
├── 诉求分析
├── 阻力分析
└── 推力分析
流程化思维有什么优势?
避免逻辑交叉
举个逻辑链交叉的例子
正面论述 ----╮ ╭---- 结论A
╳
反面论述 ----╯ ╰---- 结论B
这里的逻辑链交叉就是,一条逻辑线里同时写出了正反观点,而且要求不一致,这会增加 llm 的理解难度。
-
编写:结构清晰,降低复杂性,便于执行,减少不同流程间互相影响。流程图、思维导图可以协助梳理结构。
-
产出:稳定,可以定义顺序,结构。
②然后是,细化步骤+最小可执行模块
什么是细化步骤?
再以“心理分析 prompt” 举例,细化就是把小目标,再拆成一个个节点
心理分析
├── 诉求分析
│ ├── 分析诉求
│ ├── 选择一个诉求
│ └── 一句话总结
├── 阻力分析
│ ······
└── 推力分析
······
根据我们的要求,需要拆分每一步做到什么,相对于页面设计不同,文字的设计,会更加很模糊。
模糊 < 文字 < 画面 < 具象
为了追求足够具象,每一块内容,都可以继续拆分,直到最小的动作。
以“分析诉求”举例,又可以拆分成:关键词提取、评分。
③最后是简化冗余
为什么要简化冗余?
-
llm 的处理效果,文本(token)过多时,会减弱
-
编写处理过程,会复杂
类似于代码的概念,如何简化原本复杂的要求。举例:
冗余:
我想预订一个酒店,要求是:位于市中心,必须是5星级的,房间要有空调和WiFi,要有24小时前台服务,需要提供早餐,最好有健身房和游泳池,房间要朝南,要有大床房,浴室要有浴缸,价格在1000-1500元之间,要能停车,最好是知名连锁酒店,前台要会说英语,房间要在高层,要有商务中心,要有餐厅...
简化:
需求:预订5星级酒店
核心要求:
1. 位置:市中心
2. 价格:1000-1500元
3. 设施:含早餐,停车场
2.用词具体,不要模糊
具体是什么意思?
可衡量+行为/动作+标准
具体对应的是模糊,不是抽象。
1.使用可衡量的指标
- 模糊:“需要一个大房间”
- 具体:“房间面积至少30平方米”
2.使用具体的行为/动作描述
- 模糊:“系统要快”
- 具体:“页面加载时间不超过3秒”
3.明确定义成功标准
- 模糊:“做得好看一点”
- 具体:“使用蓝色主题,字体大小16px,页面留白不少于15px”
3.用词精准
什么是用词精准?
精准是一个相对定义。语义的形成,高度依赖场景,也就是上下文关联。
在灰姑娘里,毒苹果,是一个精准用词,坏苹果是大概用词,
在心理学里,依恋关系,是一个精准用词,亲子关系,是一个大概用词。
如果我想要编写心理学的内容,提供“依恋关系”,大概率比“亲子关系”更能呈现心理学相关内容。
根据这个逻辑线,多余的文本,会增加“脏词”的获取。
4.以“自身”为 尺
在写 prompt 的过程当中,我曾经有一个状态,老想去抄别人的内容,但是呈现不出自己想要的效果。
后来换了种方式,让别人的武器,根据自身条件,打造成适合自己的,可能不是一模一样,但是有用
如果要去习得一个技能,应该不止从脑中过,要学会用过去的经验,去实践一遍
让自己有发自内心的关键理解、关键感悟
形成具体的指令和用词,然后实践反复锤炼
就像别人定制的戒指,是别人固定的尺寸
但是自己要带的话, 要重新打造一下,改成适合自己的尺寸
有点类似,抄别人的 APP,但没有真正去理解背后的需求是什么。
二、编写 prompt 的利器-Lisp语言
lisp 是一个结构化+函数化的语言
结构化:层级清晰,举例
lisp:
(点餐
(主食
(米饭 2份)
(面条 1份))
(菜品
(热菜
(宫保鸡丁)
(青椒肉丝))
(凉菜
(凉拌黄瓜)))
(饮品
(茶水 2杯)
(可乐 1杯)))
自然语言:
自然语言:
我要点两份米饭,一份面条。热菜要宫保鸡丁和青椒肉丝,凉菜要一份凉拌黄瓜。饮料的话,来两杯茶和一杯可乐。
函数化:运算、递进逻辑清晰
- 简洁:使用最少的符号表达完整的计算过程
- 嵌套结构:括号清晰地表示了运算的优先级
举例:
lisp:
(计算成绩
(学生 "小明"
(定义 平均分
(/ (+
(科目 "数学" 85)
(科目 "语文" 90)
(科目 "英语" 88))
3))
(定义 是否及格
(判断 (> @平均分 60)))))
自然语言:
小明的数学成绩是85分,语文90分,英语88分。他的总分是把这三科加起来,平均分是总分除以3。如果平均分大于60分就算及格。
三、最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】