天津大学自然语言处理实验室6篇论文被COLING 2025接受!

COLING,国际计算语言学会议(International Conference on Computational Linguistics),是自然语言处理和计算语言学领域的顶级国际会议(CCF推荐B类国际会议)。COLING 2025将于2025年1月19日至24日在阿联酋阿布扎比召开。

天津大学自然语言处理实验室此次5篇论文被COLING 2025主会接受,1篇论文被COLING 2025 Industry Track接受。研究内容涵盖大模型安全–自动化红队测试、大模型泛化能力解释、弱到强对齐、LLM-大脑相似性分析、评测基准分析、基于过程监督奖励的反向推理。


Empirical Study on Data Attributes Insufficiency of Evaluation Benchmarks for LLMs

作者:刘创, 金任任, 姚正, 李天翼, 程亮, Mark Steedman, 熊德意

摘要

目前的评测研究主要针对模型的性能,缺乏对于基准数据集的分析,而且大语言模型学科知识评测基准的构建主要强调数据和学科的规模,忽视了其它方面的数据属性,尤其是那些可能显著增大计算资源开销和影响模型最终排名的属性。

本文围绕基准数据集中的多样性、冗余性和难度展开研究,旨在探讨当前学科知识评测基准是否充分考虑了这些数据属性。为了分析这些属性,本文首先提出了一个数据属性联合挖掘框架来探测每个属性在数据中的存在情况,接着通过逐步控制这些属性来对比前后模型排行榜之间的相关性和变化情况来分析这些属性的充分性。

实验结果揭示了当前学科知识评测基准缺乏对于这些数据属性的考量,突显出当前评估数据集在考虑多方面数据属性方面的不足。


Do Large Language Models Mirror Cognitive Language Processing?

作者:任玉琪, 金任任, 张桐瑄, 熊德意

摘要

本文采用表示相似性分析(RSA)方法来度量大语言模型(LLM)与大脑fMRI信号之间的对齐情况,以评估LLM在模拟认知语言处理方面的有效性。实验中选择了23个主流LLMs,研究了多种训练因素(例如预训练数据规模、模型规模、对齐训练和提示词)对LLM与大脑对齐的影响。

实验结果表明,预训练数据规模和模型规模与LLM-大脑相似性呈正相关,且对齐训练可以显著提高LLM-大脑相似性。显式提示词有助于提高LLM与大脑认知语言处理的一致性,而无意义的噪声提示词可能会削弱这种对齐。此外,LLM在多种评估任务(例如MMLU、Chatbot Arena)上的表现与LLM-大脑相似性高度相关。这表明LLM-大脑相似性在评估LLM能力方面具有重要潜力。


Automated Progressive Red Teaming

作者:姜博健, 景一, 沈田浩, 吴桐, 杨青, 熊德意

摘要

自动红队是一种用于挖掘大语言模型安全漏洞的技术,其初衷是在LLM部署之前提前发现这些漏洞。本文提出了一种渐进式的攻击框架APRT(由LLM组成的Pipeline)。与传统的自动红队框架不同,APRT在训练过程中将对抗样本的生成转化为一个可学习的任务,充分利用了LLM强大的学习能力,依次通过意图扩展和意图隐藏两个步骤来攻击目标LLM。结合目标LLM的反馈,我们应用主动学习技术对红队LLM进行强化。通过多轮渐进式学习,红队LLM能够高效地将攻击样本转化为意图隐蔽的对抗样本,从而绕过目标模型的防御。APRT框架在对闭源模型的攻击中也表现出较高的成功率(对GPT-4的攻击成功率为50%,对Claude-3.5的攻击成功率为39%)。此外,为了解决传统自动评价方法(如ASR,LLM-as-a-judge等)不够准确的问题,我们提出了AER指标。实验证明,AER指标与人工评价(HE)高度一致。


ConTrans: Weak-to-Strong Alignment Engineering via Concept Transplantation

作者:董威龙, 吴新维, 金任任, 徐邵洋, 熊德意

摘要

随着大语言模型规模的不断扩大,确保其行为与人类目标、价值观和意图保持一致变得越来越重要,但传统的对齐训练方法计算成本高昂。

本文从模型可解释的角度出发,提出了模型特征空间的对齐方法ConTrans。ConTrans通过概念移植实现从弱到强的对齐迁移,可以大幅降低计算开销并重复利用已学习的价值对齐能力。其核心思想是提取源LLM(通常是较小但已对齐的模型)中的概念向量,然后通过仿射变换将其重构并适配到目标LLM(通常是较大但未对齐的基础模型)的特征空间中。在目标LLM推理时,通过重构的概念向量对其输出进行干预。

实验表明,ConTrans成功地将各种对齐概念从7B模型移植到13B和70B模型,甚至在真实性方面超越了指令微调模型。实验结果也验证了本文方法在同一系列LLM内部和不同系列LLM之间的有效性,为实现从弱到强的对齐泛化和控制提供了一种新的途径。


Towards Understanding Multi-Task Learning (Generalization) of LLMs via Detecting and Exploring Task-Specific Neurons

作者:冷永琦, 熊德意

摘要

虽然大语言模型已经展示了卓越的多任务能力,但理解其背后的学习机制仍然是一个具有挑战性的问题。在本文中,我们试图从神经元的角度来理解这种机制。

具体来说,我们通过对特定任务数据进行梯度归因来检测LLM中的任务特定神经元。通过广泛的失活和微调实验,我们证明了检测到的神经元与给定的任务高度相关,我们称之为任务特定神经元。

利用这些被识别的任务特定神经元,我们深入研究了多任务学习和持续学习中的两个常见问题:泛化和灾难性遗忘。我们发现任务特定神经元的重叠与任务的泛化和特化密切相关。有趣的是,在LLM的某些层,不同任务特定神经元的参数具有很高的相似性,并且这种相似性与泛化性能高度相关。

受这些发现的启发,我们提出了一种神经元级别的连续微调方法,该方法在持续学习过程中只对当前任务特定的神经元进行微调,实验结果证明了所提方法的有效性。我们的研究为LLM在多任务学习中的可解释性提供了见解。


BackMATH: Towards Backward Reasoning for Solving Math Problems Step by Step

作者:张少巍, 熊德意

摘要

大模型在推理任务中取得了令人印象深刻的成果,尤其是在多步推理任务中。然而,当面对更加复杂的数学问题时,其性能显著下降。为了解决这一问题,本文提出了一种基于逆向推理的数据集——BackMATH-Data。该数据集包含约14K个反向推理问题以及10万条推理步骤,采用面向结果的构造方法,通过将原始问题中的推理结果与特定求解条件交换,生成反向推理问题。

此外,我们引入了反向推理过程监督奖励模型(BackPRM)和BackMATH-LLM。BackPRM用于监督生成的反向推理问题的质量,而BackMATH-LLM则专注于数学推理任务。BackMATH-LLM通过强化学习进行微调和优化,通过监督反向推理问题的质量以及对推理步骤提供反馈提升LLMs的数学推理能力。

大量实验表明,我们的模型在GSM8K数据集上实现了68.1%的准确率,在MATH数据集上实现了21.9%的准确率,分别比现有最先进模型(SOTA)提升了1.6%和2.1%。


最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值