DEEPSEEK!【天津大学】2025深度解读DeepSeek原理与效应:技术原理、DeepSeek效应、未来展望

该文档由天津大学自然语言处理实验室撰写,深度解读了大语言模型的发展及 DeepSeek 的技术原理、效应和未来展望,旨在剖析其在大语言模型领域的创新与影响。

图片

  1. 大语言模型发展路线图
    • 生成式 AI 发展历程

      :生成式 AI 自 2014 - 2024 年不断演进,关键技术包括 Attention、Transformer、Scaling Laws、RLHF 等。Attention 用于数据依存关系建模,Transformer 成为数据生成统一架构,Scaling Laws 揭示数据学习与生成的扩展法则,RLHF 使生成数据与人类价值对齐。

    • 语言模型与大语言模型发展

      :语言模型旨在对自然语言进行统计建模,预测句子中的下一个单词;大语言模型自 2018 年起发展迅速,技术栈涵盖模型训练、评测、应用部署等多个环节,其训练范式包括预训练、后训练,注重性能与成本的平衡。

  2. DeepSeek V2 - V3/R1 技术原理
    • DeepSeek V2

      :创新点包括 DeepSeekMoE 和 MLA。DeepSeekMoE 采用稀疏激活技术,计算量不随规模线性增长,具备细粒度专家共享与路由机制,并对路由和通信进行改造;MLA 通过低秩压缩降低 KV cache 占用空间。在训练开销、存储开销和生成速度方面表现出色,性价比高。

    • DeepSeek V3

      :创新体现在 Infrastructures 和 Multi - Token Prediction(MTP)。通过减少流水线气泡、实现高效节点间 All - to - All 通信、采用 FP8 训练以及低精度存储与通信,提升了性能。MTP 可一次预测多个 token,在性能 / 成本曲线方面优势明显,训练成本相对较低。

    • DeepSeek R1

      :主要创新有 DeepSeek - R1 - Zero 大规模 RL 训练,发现 RL 训练的 Scaling Laws,推理模型训练技术框架(4 步法)将推理与对齐合为一体,强化学习训练框架 GRPO 降低训练成本,推理模型蒸馏将大模型推理能力蒸馏到小模型。R1 - Zero 训练规模大,能涌现出搜索、反思等能力,R1 在逻辑推理性能上表现优异,且开源发布打破了技术护城河。

  3. DeepSeek 效应
    • 算力价格战

      :DeepSeek 凭借高性价比冲击了市场,其 V3 和 R1 在性能 / 成本曲线方面表现突出,打破了数百亿美元构建的前沿技术护城河,引发了算力价格竞争。

    • 开源 vs 闭源

      :R1 的开源发布是大模型开源史上的里程碑,打破了美国 AI 第一梯队企业的技术封闭,开源与闭源之争不仅涉及技术公开性,还关乎 AI 安全治理。

    • 认知误区

      :DeepSeek 颠覆了美国人对中国 AI 水平的认知,改变了人们对大模型研发成本的看法,表明中国在大模型领域具备强大的创新能力。

    • 创新 & 人才 & Vision

      :大模型发展存在同质化竞争,底层技术原创性突破不足。DeepSeek 的成功得益于众多技术型人才的创新以及合理的人才管理。中国若要在 AI 领域取得更大突破,需要更多企业、高校和研究机构开展 0 - 1 创新,培养战略型和技术型人才。

  4. 未来展望

    :未来实现 AGI/ASI 可能还需 3 - 5 个重大突破,目前处于技术突破和路线明确的阶段。DeepSeek 具有快速迭代推理大模型的优势,R2 可能很快发布。但 R1 在安全性方面存在一定问题,尤其是危险目标和情景意识方面,未来需要在推理能力提升的同时,加强模型安全性研究,探索推理与安全结合的创新解决方案。

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

700余份DEEPSEEK、大模型、AIGC、AI人工智能、ChatGPT报告、白皮书及行业应用方案获取方式

图片

图片

图片

图片

图片

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

公众号:优享智库

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值