提示工程(Prompt Engineering)最全综述(三)自动提示工程、有效提示工程的最佳实践

四、自动提示工程

(一)核心思想

自动提示工程(APE)的核心思想是利用大语言模型自身来生成多种提示候选,然后根据选定的评估指标对这些候选进行评估,最终选择表现最佳的提示。这一过程是迭代的,可以重复进行以进一步优化提示的效果。通过自动化提示生成和评估的过程,节省了人工设计提示的时间和精力,同时提高了提示的质量和适应性。

(二)实现步骤

  1. 提示生成:首先向大语言模型提供一个初始提示,并指示其生成具有相同语义但表述不同的多个提示变体。例如,若目标是为一个旅游网站训练一个聊天机器人,初始提示可以要求模型生成游客询问特定旅游景点门票价格的不同表达方式。

  2. 提示评估:使用合适的评估指标对生成的每个提示候选进行评估。常用的评估指标包括 BLEU(双语评估辅助工具)和 ROUGE(面向召回的摘要评估辅助工具)等。这些指标从不同角度评估提示的质量,如流畅性、连贯性以及与原始提示的语义相似度等。

  3. 提示选择:选择评估得分最高的提示候选作为最终用于目标应用的提示。如果需要,还可以对选定的提示进行进一步的微调,并再次评估,以确保其达到最佳效果。

(三)示例

以一个在线书店的聊天机器人为例,我们提供初始提示:“我们有一个在线书店,为了训练聊天机器人,我们需要各种顾客询问某本畅销书价格的方式。生成 10 个变体,保持语义相同。” 大语言模型会根据此指令生成一系列不同的提示,如 “某本畅销书多少钱?”“我想知道某本畅销书的售价是多少?” 等。然后,使用评估指标对这些提示进行评估,选择最适合用于训练聊天机器人的提示,使其能够更好地理解和处理顾客关于图书价格的询问。

五、有效提示工程的最佳实践

(一)提供示例

只要条件允许,尽量使用单样本或少量样本学习来展示期望的输出结构或模式。示例对于大语言模型来说是非常有效的学习工具,它们能够直观地向模型传达我们的需求,帮助模型更快地理解任务并生成符合要求的回答。例如,在训练一个图像描述生成模型时,提供一些图像及其对应的准确描述示例,模型就能更好地学习到如何根据图像特征生成合理的描述。

(二)设计简洁

保持提示简洁、清晰、易于理解。避免使用复杂的语言和不必要的信息,以免混淆模型。使用明确描述期望动作的动词,如 “总结”“解释”“生成” 等。简洁的提示能够减少模型理解的难度,提高回答的准确性和效率。例如,当我们想要获取一篇文章的主旨时,简单地输入 “总结这篇文章的主旨” 比使用冗长复杂的表述效果更好。

(三)明确输出要求

不要给出模糊的指令,要明确说明期望的回答格式、风格、长度和内容。清晰的输出要求可以使模型更准确地把握我们的期望,生成更符合需求的回答。例如,如果我们需要一个简短的摘要,明确指定 “生成不超过 100 字的摘要”;如果需要一个正式的商务报告风格的回答,也要在提示中说明。

(四)优先指令而非限制

重点告诉大语言模型要做什么,而不是不要做什么。仅在安全、清晰或特定要求的情况下使用限制条件。正面的指令能够引导模型朝着正确的方向生成回答,而过多的限制可能会限制模型的创造力和灵活性。例如,在要求模型创作一篇文章时,告诉它 “围绕某个主题创作一篇具有逻辑性和趣味性的文章”,而不是 “不要写得太枯燥,不要偏离主题”。

(五)控制最大令牌长度

可以在配置中或直接在提示中设置限制,以管理输出长度和成本。合理控制输出长度既能满足我们的需求,又能避免不必要的资源浪费。例如,在查询一个简单事实时,设置较短的最大令牌长度,确保回答简洁明了;而在生成较长的文本内容时,根据实际需要适当调整长度限制。

(六)使用变量

在提示中引入变量可以提高其可重用性和灵活性。通过改变变量的值,同一提示可以适用于不同的输入,这对于构建与大语言模型交互的应用程序非常有用。例如,在一个旅游推荐系统中,提示可以包含 “目的地” 变量,根据用户输入的不同目的地生成相应的旅游建议。

(七)实验与迭代

提示工程(prompt engineering)的成功关键在于不断实验。尝试不同的输入格式、写作风格、模型配置,甚至与其他提示工程师合作比较不同的方法,以找到最适合特定任务的方式。由于大语言模型的复杂性和多样性,没有一种通用的最佳提示方法,需要通过不断尝试和改进来优化提示效果。例如,在优化一个问答系统的提示时,尝试不同的问题表述方式、增加或减少示例数量、调整模型的温度参数等,观察模型回答的准确性和质量变化,逐步找到最佳组合。

(八)适应模型更新

大语言模型在不断发展,新的版本可能会带来架构、训练数据或能力上的改进。及时了解这些更新,并重新审视和优化提示,以充分利用新的特性。例如,当模型更新了对某种语言结构的理解能力时,我们可以调整提示,更好地利用这一改进,提高回答的质量。

(九)探索输出格式

对于涉及数据提取、组织或分析的任务,考虑请求结构化的输出格式,如 JSON。结构化输出便于后续处理,减少了手动格式化的工作量,提高了数据处理的效率。例如,在从一篇新闻文章中提取关键信息时,要求模型以 JSON 格式输出,包含标题、主要内容、涉及人物等信息,方便后续的存储和分析。

(十)记录实验过程

详细记录提示尝试、模型配置、输出结果和观察到的现象。这有助于跟踪进度、发现模式,并随着时间的推移不断完善提示策略。通过记录和分析实验数据,我们可以总结经验教训,避免重复犯错,同时也能更好地理解模型的行为和特点,为进一步优化提示提供依据。

六、最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值