灰色关联分析(GRA)的理论及应用(matlab和python)


什么是灰色关联分析

灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度。

通常可以运用此方法来分析各个因素对于结果的影响程度,也可以运用此方法解决随时间变化的综合评价类问题,其核心是按照一定规则确立随时间变化的母序列,把各个评估对象随时间的变化作为子序列,求各个子序列与母序列的相关程度,依照相关性大小得出结论。


灰色关联分析的步骤

灰色关联分析的具体计算步骤如下:

第一步:确定分析数列。

确定反映系统行为特征的参考数列和影响系统行为的比较数列。反映系统行为特征的数据序列,称为参考数列。影响系统行为的因素组成的数据序列,称比较数列。

(1)参考数列(又称母序列)为 Y = Y ( k ) ∣ k = 1 , 2... n Y={Y(k) | k = 1,2...n} Y=Y(k)k=1,2...n

(2)比较数列(又称子序列)为 X i = X i ( k ) ∣ k = 1 , 2... n , i = 1 , 2... m X_i={X_i(k) | k = 1,2...n},i = 1,2...m Xi=Xi(k)k=1,2...n,i=1,2...m

第二步,变量的无量纲化

由于系统中各因素列中的数据可能因量纲不同,不便于比较或在比较时难以得到正确的结论。因此在进行灰色关联度分析时,一般都要进行数据的无量纲化处理。主要有一下两种方法
  
(1)初值化处理: x i ( k ) = x i ( k ) x i ( 1 ) , k = 1 , 2... n ; i = 0 , 1 , 2... m x_i(k)=\frac{x_i(k)}{x_i(1)},k=1,2...n;i=0,1,2...m xi(k)=xi(1)xi(k),k=1,2...n;i=0,1,2...m

(2)均值化处理: x i ( k ) = x i

评论 131
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值