一、原理
模糊逻辑指模仿人脑的不确定性概念判断、推理思维方式,对于模型未知或不能确定的描述系统,以及强非线性、大滞后的控制对象,应用模糊集合和模糊规则进行推理,表达过渡性界限或定性知识经验,模拟人脑方式,实行模糊综合判断,推理解决常规方法难于对付的规则型模糊信息问题。模糊逻辑善于表达界限不清晰的定性知识与经验,它借助于隶属度函数概念,区分模糊集合,处理模糊关系,模拟人脑实施规则型推理,解决因“排中律”的逻辑破缺产生的种种不确定问题 。
二、过程及结果
1、已知一个容器中液体的流出是随机变化的,无法建立它的数学模型,但是,通过人工控制进液阀门开度和进液流速
可以调节容器中液位的高低,使液位保持恒定。根据人工操作经验,已经归纳总结出如下保持液位恒定的控制规则:
如果液位偏低,则快开阀门
如果液位正好,则阀门开度不变
如果液位偏高,则快关阀门
如果液位正好而进液流速慢,则慢关阀门
如果液位正好而进液流速快,则慢开阀门
根据matlab模糊工具箱中自带的水位控制系统的Simulink仿真模型,建立模糊推理系统,使液位能够恒定在输入
的要求液位附近。
按照要求在fuzzy工具箱中建立模糊系统:
图1
设置输入输出数据:
图2
图3
图4
添加相应的模糊规则:
图5
查看水位0.6 水位变化率位0.1时输出结果:
图6
查看输入输出特性曲面:
图7
利用隶属度函数编辑器中file-export to workspace命令,将建立的模糊推理系统,以名字tank保存到MATLAB工作空间中的tank.fis模糊推理矩阵中:
图8
打开matlab自带水位控制系统模型:
图9
打开Fuzzy Logic Controller模糊逻辑控制器,使用之前导入到workspace的FIS(模糊推理系统:
图10
运行查看水位变化情况及comparison scope中的波形:
图11
图12
- 某一学校选拔过程是根据学生的数学成绩和学生身高来确定学生是否能够通过选拔。假设数学成绩∈[0,100]模糊化为两级:差与好;学生身高∈[0,10]模糊化为两级:高和正常;学生通过率∈[0,100]模糊化为三级:高、低和正常。模糊规则为:
IF数学成绩 is 差 and 身高 is 高 THEN 通过率 is 高
IF数学成绩 is 好 and 身高 is 高 THEN 通过率 is 低
IF 身高 is 正常 THEN 通过率 is 正常
适当选择隶属度函数后,设计一基于Mamdani模型的模糊推理系统,计算当数学和身高分别为[50, 1.5]和[80, 2]时,选拔通过率的值,并绘制输入输出曲面图
按照要求输入代码:
图13
输入输出曲面
图14
输入为[50 1.5;80 2]时的输出:
图15