参数法和模拟法计算VaR

本文深入探讨了计算VaR的两种主要方法:参数法和模拟法。参数法基于正态分布假设,通过风险因子和风险矩阵计算;模拟法则包括历史模拟和蒙特卡洛模拟,后者允许更灵活的分布假设。此外,还介绍了其他VaR指标,如ES、增量VaR和成分VaR的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回顾VaR的定义,为未来收益的累计分布函数,那么

所以,VaR本质上为未来收益的分位点。要计算它,最重要的是估计未来收益的分布。在实际计算中有两种大的方向:

  1. 满足某种分布(通常使用正态分布)的假设上,估计该分布的参数,便可确定整个分布,然后求分位点。
  2. 进行抽样,通过样本的分位点估计整个分布的分位点。

第一个方向被称为参数法;后一个方向成为模拟法,在实际使用中,又可分为历史模拟法和蒙特卡洛模拟法两种。对于这三种方法,不单需要知道它们的计算方法,更重要地是了解它们的假设和适用范围。以下提到的风险因子、风险映射、风险矩阵、估值等概念,已在【VaR Primer】风险因子和估值框架里详细描述。其它比如风险矩阵等计算方法将在【VaR Primer】VaR的参数选择和计算细节里给出。

1.参数法

在参数法中,通常假设未来收益

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值