引言
本文是光纤布拉格光栅(FBG)的笔记【1】,主要介绍了光纤布拉格光栅的波导结构,并且利用动量和能量守恒推导了光纤布拉格波长的表达式
普通光纤中让折射率发生周期性变化就是结构最简单的均匀光纤布拉格光栅(FBG),其波导结构如下图所示。
其传感原理描述可以分为以下的三点:
①光纤纤芯传播的光会在每个光栅面进行反射和透射;
②如果不满足布拉格条件,依次排列的光栅平面反射的光会逐渐变得不同直到最后相互抵消;同时由于系数不匹配,与布拉格波长不相符的光在每个光栅平面的反射也很微弱,这些光大部分在光纤中发生透射。
③如果满足布拉格条件,每个光栅平面反射回来的光逐步累加,最后会在反向形成一个反射峰,中心波长由光栅参数决定。
我们关注的是符合布拉格条件的光,通过监测布拉格波长可以实现温度、应变等的传感。利用动量和能量守恒我们可以对布拉格波长的表达式进行推导:
能量守恒:
h ν r = h ν i h\nu_r=h\nu_i hνr=hνi
这要求入射光频率 ν i \nu_i νi和反射光 ν r \nu_r νr频率(满足布拉格条件的光)相同。
动量守恒:
P i + P = P f \mathbf{P}_i+\mathbf{P}=\mathbf{P}_f Pi+P=Pf
这要求入射波矢量 P i \mathbf{P}_i Pi与光栅波矢量 P \mathbf{P} P之和等于反射波矢量 P f \mathbf{P}_f Pf。由于动量大小为 h λ \frac{h}{\lambda} λh,入射光和反射光的波长一致(满足布拉格条件的光),所以反射波矢量 P f \mathbf{P}_f Pf和入射波矢量 P i \mathbf{P}_i Pi大小相等方向相反,而光栅的波矢量为幅值大小为 2 π Λ \frac{2\pi}{\Lambda} Λ2π,所以动量守恒条件可以改写为:
2 π n e f f λ B − 2 π Λ = − 2 π n e f f λ B \frac{2\pi n_{eff}}{\lambda_B}-\frac{2\pi}{\Lambda}=-\frac{2\pi n_{eff}}{\lambda_B} λB2πneff−Λ2π=−λB2πneff
也即:
2
(
2
π
n
e
f
f
λ
B
)
=
2
π
Λ
2(\frac{2\pi n_{eff}}{\lambda_B})=\frac{2\pi}{\Lambda}
2(λB2πneff)=Λ2π
最终得到布拉格波长
λ
B
\lambda_B
λB的表达式:
λ
B
=
2
n
e
f
f
Λ
\lambda_B=2n_{eff}\Lambda
λB=2neffΛ
式中
λ B \lambda_B λB:光纤布拉格光栅反射回来的入射光在自由空间中的中心波长;
n e f f n_{eff} neff:光纤纤芯针对自由空间中心波长的折射率。
参考文献:
[1]饶云江 王义平.光纤光栅原理及应用[M].北京:科学出版社,2006:136-137.