数理统计笔记6:假设检验

引言

数理统计笔记的第6篇先介绍了假设检验,给出了各种常用的假设检验的方法,最后介绍了用置信区间和p值来进行假设检验的方法。

假设检验描述

什么是假设

在这里插入图片描述

什么是假设检验

在这里插入图片描述

假设检验的基本思想

在这里插入图片描述

假设检验的步骤

在这里插入图片描述

注意:要接受的结论放在备择假设,要拒绝的结论放在原假设,我们的目的是要看能不能拒绝原假设。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

当计算的统计量出现在拒绝域上时,这种情况出现的概率本应该特别小,基本不可能出现,但还是出现了,所以我们就有很大的可能性去猜测原假设是错误的,但是我们最后的结论是原假设以一定概率( 1 − α 1-\alpha 1α)不被接受,而不是直接接受备择假设。这是一种否定对立面的方式,但是也不代表着肯定(这个地方有点绕)。

举个栗子,比如我要验证你一天玩手机的时间T小于6小时,原假设是T>=6,备择假设就是T<6(拒绝域)。检验出来计算结果在拒绝域内(置信度比如说是5%),我们结论就是有95%的概率认为你一天玩手机的时间T不小于6小时。

假设检验的原理

在这里插入图片描述

假设检验的两类错误

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

双侧检验和单侧检验

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

单个正态总体的参数检验

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

总体方差已知的均值检验-双尾Z检验

在这里插入图片描述

例子

在这里插入图片描述

在这里插入图片描述

总体方差已知的均值检验-单尾Z检验

在这里插入图片描述

在这里插入图片描述

例子

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

总体方差未知的均值检验-双尾t检验

在这里插入图片描述

例子

在这里插入图片描述

在这里插入图片描述

总体方差未知的均值检验-单尾t检验

统计量和双尾t检验一样,原假设和备择假设换一下,参考前面的总体方差已知的均值检验-单尾Z检验的假设。

例子

在这里插入图片描述
在这里插入图片描述

总体比例的假设检验-Z检验

在这里插入图片描述

例子

在这里插入图片描述
在这里插入图片描述

单个总体方差的检验- χ 2 \chi^2 χ2检验

在这里插入图片描述

例子

在这里插入图片描述
在这里插入图片描述

两个正态总体的参数检验

在这里插入图片描述

在这里插入图片描述

总体方差已知的两个总体均值之差的检验-Z检验

在这里插入图片描述

在这里插入图片描述

例子

在这里插入图片描述
在这里插入图片描述

总体方差未知但相等的两个总体均值之差的检验-t检验

在这里插入图片描述

例子

在这里插入图片描述
在这里插入图片描述

假设检验中的其他问题

在这里插入图片描述

使用置信区间进行假设检验

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

例子

在这里插入图片描述
在这里插入图片描述

使用p值进行假设检验

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

例子1

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

例子2

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

使用p值法的注意事项

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值