引言
数理统计笔记的第6篇先介绍了假设检验,给出了各种常用的假设检验的方法,最后介绍了用置信区间和p值来进行假设检验的方法。
假设检验描述
什么是假设
什么是假设检验
假设检验的基本思想
假设检验的步骤
注意:要接受的结论放在备择假设,要拒绝的结论放在原假设,我们的目的是要看能不能拒绝原假设。
当计算的统计量出现在拒绝域上时,这种情况出现的概率本应该特别小,基本不可能出现,但还是出现了,所以我们就有很大的可能性去猜测原假设是错误的,但是我们最后的结论是原假设以一定概率( 1 − α 1-\alpha 1−α)不被接受,而不是直接接受备择假设。这是一种否定对立面的方式,但是也不代表着肯定(这个地方有点绕)。
举个栗子,比如我要验证你一天玩手机的时间T小于6小时,原假设是T>=6,备择假设就是T<6(拒绝域)。检验出来计算结果在拒绝域内(置信度比如说是5%),我们结论就是有95%的概率认为你一天玩手机的时间T不小于6小时。
假设检验的原理
假设检验的两类错误
双侧检验和单侧检验
单个正态总体的参数检验
总体方差已知的均值检验-双尾Z检验
例子
总体方差已知的均值检验-单尾Z检验
例子
总体方差未知的均值检验-双尾t检验
例子
总体方差未知的均值检验-单尾t检验
统计量和双尾t检验一样,原假设和备择假设换一下,参考前面的总体方差已知的均值检验-单尾Z检验的假设。
例子
总体比例的假设检验-Z检验
例子
单个总体方差的检验- χ 2 \chi^2 χ2检验
例子
两个正态总体的参数检验
总体方差已知的两个总体均值之差的检验-Z检验
例子
总体方差未知但相等的两个总体均值之差的检验-t检验
例子
假设检验中的其他问题
使用置信区间进行假设检验
例子
使用p值进行假设检验
例子1
例子2