关键点检测部分资源

关键点检测资源整理

总结

论文名时间论文地址相关简介
ORB:An Efficient Alternative to SIFTor SURF2012链接图像特征提取任务。传统方法,加速版SIFT,使用FAST算法提取关键点
DeepPose:Human Pose Estimation via Deep Neural Networks2014链接翻译体态(人体关键点)检测任务。首篇基于DNNs的人体姿态估计,对标记了10个关节的图像(只有一个人)进行训练,最后一层全连接层输出特征点坐标
Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation2014链接代码翻译人体关键点检测任务。全卷积网络对不同尺度图片输出人体关节热力图,通过引入空间模型降低FP
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields2016链接]代码人体姿态检测基本架构之一。通过同时检测关节和肢体然后匹配来检测人体姿态。
Stacked Hourglass Networks for Human Pose Estimatio2016链接解读代码人体姿态检测基本架构之一。使用连续的池化+下采样来同时捕获全局、局部信息。
Convolutional Pose Machines2016链接解读代码人体姿态检测。输出热力图。继承了姿态机(PM)以学习长距离空间上的依赖关系。
Cascaded Pyramid Network2017链接代码行人候选框内的人体关键点检测
Simple Baselines for Human Pose Estimation2018链接解读代码人体关键点检测任务。使用Resnet+deconv这种最简单的方法生成热力图
Center and Scale Prediction: A Box-free Approach for Pedestrian and Face Detection2019链接代码行人人脸检测任务。不再使用中anchorbox,基于FCN寻找目标中心点并预测尺度来检测目标
Deep High-Resolution Representation Learning for Human Pose Estimation2019链接代码之前的工作采用下采样-上采样的方法,本文通过并行操作,一直保持高分辨率。

文章

https://zhuanlan.zhihu.com/p/102457223

  • 关键点检测及人体关键点检测是COCO数据集中的一个公开比赛,数据集将人体分为17个关节作为关键点,并以此进行行为运动预测
  • 单人2d关键点检测:CPM,Hourglass, OpenPose, CPN, MSPN, HRNet

https://www.zhihu.com/question/293815527/answer/488174361

  • 人类关键点检测从DeppPose开始,使用CNN直接回归坐标点的方法
  • 《Joint Training of…》开启了groundTruth+二维高斯函数生成热力图,从而让网络预测热力图的方法,最后用NMS或动态规划输出二维坐标
  • CSP-Center and Scale Prediction行人检测

https://www.jianshu.com/p/39fe654ed410

  • DeepPose:通过深度神经网络进行人体姿态估计
  • Stacked Hourglass:通过堆叠沙漏网络进行人体姿态估计
  • CPN:级联金字塔网络用于人体姿态估计
  • Simple Baseline:人体姿势估计和跟踪的简单基线
  • Convolutional Pose Machine
  • HRNet: 用于人体姿势估计的深度高分辨率表示学习方法

https://zhuanlan.zhihu.com/p/90122194?utm_source=wechat_session
特征点检测:SIFT(传统算法)

https://zhuanlan.zhihu.com/p/56016574

论文

  • Scale-invariant feature transform(SIFT)
  • ORB:An Efficient Alternative to SIFTor SURF(SIFT改进)
  • DeepPose
  • Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation
  • CSP-Center and Scale Prediction
  • Stacked Hourglass
  • CPN
  • Simple Baseline
  • Convolutional Pose Machine
  • HRNet
  • D2-Net
  • DensePose
  • CPM
  • MSPN
  • OpenPose
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值