【计算机视觉40例】案例10:隐身术

本文介绍了《计算机视觉40例——从入门到深度学习(OpenCV-Python)》中的‘隐身术’案例。通过该案例,读者可以理解如何利用计算机视觉技术,将红色物体在图像中替换成背景,实现类似隐身的效果。隐身术的基本原理包括获取原始背景、前景图像,然后通过图像处理技术将红色部分替换为背景。案例提供了源代码和测试图片,读者可以通过阅读书籍或观看视频了解更多详情。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导读】本文是专栏《计算机视觉40例简介》的第10个案例《隐身术》。该专栏简要介绍李立宗主编《计算机视觉40例——从入门到深度学习(OpenCV-Python)》一书的40个案例。

目前,该书已经在电子工业出版社出版,大家可以在京东、淘宝、当当等平台购买。

大家可以在公众号“计算机视觉之光”回复关键字【案例10】获取本文案例的源代码及使用的测试图片等资料。

针对本书40个案例的每一个案例,分别录制了介绍视频。如果嫌看文字版麻烦,可以关注公众号“计算机视觉之光”直接观看视频介绍版。

隐身术演示如图1所示,图中左侧是正常显示的图像、右侧是隐身效果。从图中可以看出,红色部分会被显示为背景,当人身着红色衣服时可以实现隐身效果。

图1 答题卡识别

如图2所示,是隐身效果图。

图2 隐身效果图

隐身术的基本原理,其原理如图3所示。图中各个图像具体为:

  1. 图像A:原始背景。该图像采集自某一个特定时刻,是希望被伪装成的背景;
  2. 图像B:实际前景(红斗篷)。此时,前景中出现两个人,其中左边的人,正常着装,右侧的人身穿作为伪装的红色斗篷;
  3. 图像C:红斗篷对应的原始背景。该图像是从图像A中提取的,是图像A中对应着图像B中红色斗篷位置的图像,是用来替换红色斗篷的;
  4. 图像D:抠除红斗篷的前景。该图像由图像B得到,是将图像B中红色斗篷位置的图像抠除后得到的。
  5. 图像E:隐身效果。该图像是通过“图像E = 图像C + 图像D”得到。

图3 隐身术原理

在《计算机视觉40例——从入门到深度学习(OpenCV-Python)》一书中,从算法原理、实现流程等角度系统深入地介绍了该案例的理论基础和实现过程,并对具体的代码实现进行了细致的介绍与解释。欢迎大家阅读第10章《隐身术》获取详细内容。

《计算机视觉40例——从入门到深度学习(OpenCV-Python)》在介绍Python基础、OpenCV基础、计算机视觉理论基础、深度学习理论的基础上,介绍了计算机视觉领域内具有代表性的40个典型案例。这些案例中,既有传统的案例(数字识别、答题卡识别、物体计数、缺陷检测、手势识别、隐身术、以图搜图、车牌识别、图像加密、指纹识别等),也有深度学习案例(图像分类、风格迁移、姿势识别、实例分割等),还有人脸识别方面的案例(表情识别、驾驶员疲劳监测、识别性别与年龄等)。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

superdont

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值