Visual studio C++:LQR轨迹跟踪仿真

前言:

        因为工作需要开始学习车辆横纵向控制,然后学到了LQR,正好写一个博客把程序保存下来。为了加强C++代码能力,本次仿真的所有文件均用C++完成。

 

代码结构梳理

        开始之前非常感谢这位大佬给出的参考:【自动驾驶】LQR实现轨迹跟踪,这次项目大部分都是将该博客从python翻译成C++,当然其中也发现了一些问题,后续再谈。

该项目用多个模块组成,分别为LQR、LQR_node、tool、trajectory、matplot5个模块。

1.LQR_node为主函数节点,负责调用轨迹生成模块、LQR控制器模块和画图;

2.LQR为LQR控制器模块,控制器中构造了模型参数A、B,计算黎卡提方程等功能;

3.trajectory为轨迹生成模块,并且计算出坐标点对应的曲率值;

4.tool为工具模块,定义了项目中需要的数据类型和一些角度处理函数(虽然没用到);

5.matplot为画图模块,调用了python的matplot功能进行作图;

        该项目用到的库有Eigen、python、matplotlibcpp,其中最为重要的是Eigen库,建议提前看一下该库的基本命令。

 

准备工作

1.项目配置Eigen库:

安装和使用C++线性代数库eigen(Windows下minGW+VS code, VS2019配置方式)

2.项目配置matplot库:
VS C++调用python进行画图matplotlib

 windows下配置C++版本的matplotlib绘图工具matplotlibcpp

 

别忘了把解决方案配置换成Release,我在这里卡了好久

8a03efdacf364857a42cd7d10cf55494.png

 

代码

1.tool.h

#pragma once
#include <iostream>
using namespace std;
#define pi acos(-1)

//定义路径点
typedef struct waypoint {
	int ID;
	double x, y, yaw, K;//x,y,yaw,曲率K
}waypoint;

//定义小车状态
typedef struct vehicleState {
	double x, y, yaw, v, kesi;//x,y,yaw,前轮偏角kesi
}vehicleState;

//定义控制量
typedef struct U {
	double v;
	double kesi;//速度v,前轮偏角kesi
}U;

double normalize_angle(double angle);//角度归一化 [-pi,pi];

double limit_kesi(double kesi);//前轮转角限幅 [-pi/2,pi/2];

2.tool.cpp

#include<iostream>
#include<tool.h>

double normalize_angle(double angle)//角度归一化 [-pi,pi];
{
	if (angle > pi) {
		angle -= 2.0 * pi;
	}
	if (angle <= -pi) {
		angle += 2.0 * pi;
	}
	return angle;
}

double limit_kesi(double kesi) {
	if (kesi > pi / 2) {
		kesi = pi / 2;
	}
	if (kesi < -pi / 2) {
		kesi = -pi / 2;
	}
	return kesi;
}

3.LQR.h

#include <iostream>
#include <Eigen/Dense>
#incl
LQR(线性二次调节器)是一种常用的控制器设计方法,可以用于自动驾驶中。在C++中,可以使用Eigen库来实现LQR控制器。具体步骤如下: 1. 定义系统模型,包括状态方程和输出方程。 2. 设计目标函数,包括状态误差和控制输入的加权和。 3. 使用LQR算法计算出最优的控制器增益矩阵。 4. 在每个时间步上,使用当前状态计算出控制输入。 以下是一个简单的示例代码: ```c++ #include <Eigen/Dense> using namespace Eigen; int main() { // 定义系统模型 MatrixXd A(2, 2); A << 1, 1, 0, 1; MatrixXd B(2, 1); B << 0, 1; MatrixXd C(1, 2); C << 1, 0; // 设计目标函数 MatrixXd Q(2, 2); Q << 1,0, 0, 1; MatrixXd R(1, 1); R << 1; // 计算LQR增益矩阵 MatrixXd K = LQR(A, B, Q, R); // 在每个时间步上计算控制输入 VectorXd x(2); x << 0, 0; double u = -K * x; return 0; } MatrixXd LQR(const MatrixXd& A, const MatrixXd& B, const MatrixXd& Q, const MatrixXd& R) { // 计算代数Riccati方程的解 MatrixXd P = Riccati(A, B, Q, R); // 计算LQR增益矩阵 MatrixXd K = R.inverse() * B.transpose() * P; return K; } MatrixXd Riccati(const MatrixXd& A, const MatrixXd& B, const MatrixXd& Q, const MatrixXd& R) { // 初始化P矩阵 MatrixXd P = Q; // 迭代计算P矩阵 for (int i = 0; i < 100; i++) { MatrixXd P_new = A.transpose() * P * A - A.transpose() * P * B * (R + B.transpose() * P * B).inverse() * B.transpose() * P * A + Q; if ((P_new - P).norm() < 1e-6) { break; } P = P_new; } return P; } ```
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值