import numpy as np
import matplotlib.pyplot as plt
x1=np.array([])
y1=np.array([])
x = np.array([0,200, 400, 600, 800, 1000])
y = np.array([0,0.194, 0.359, 0.506, 0.642, 0.792])
# 使用numpy的polyfit函数进行直线拟合,这里我们选择一次多项式(即直线)
slope, intercept = np.polyfit(x, y, 1)
# 创建拟合直线的y值
y_fit = slope * x + intercept
# 计算样本点
sy=0.345
sx=(0.345-intercept)/slope
print(sx)
correlation_matrix = np.corrcoef(x, y)
r2_value = (correlation_matrix[0, 1])**2
plt.text(0.95, 0.05, f'R\u00B2 = {r2_value:.3f}', transform=plt.gca().transAxes, fontsize=12,
verticalalignment='bottom', horizontalalignment='right')
plt.scatter(x, y, label='原始数据')
plt.scatter(sx, sy, label='样本数据')
plt.plot(x, y_fit, color='red', label='拟合直线')
plt.xlabel('蛋白含量ug/ml')
plt.ylabel('A595nm')
plt.xticks([0,200,400,600,800,1000])
plt.title('考马斯亮蓝蛋白标准曲线标定')
plt.legend()
plt.show()
考马斯亮蓝蛋白G-250测定蛋白质的含量之标准曲线python绘图
最新推荐文章于 2025-05-04 19:41:26 发布