车道线分割项目记录-Discriminative_loss

目录

 一、损失函数原理

1. L_var

2. L_dist

二、代码


 一、损失函数原理

 主要是看明白了每个符号代表的意思就能明白了。

1. L_var

L_var是方差损失,也就是一条车道线的像素点之间的方差越小越好。上面的式子中,前面两个求和以及1/C,1/N,就是为了平均这个损失值,取所有的车道线,再取所有的像素点,计算完了对所有车道线以及所有像素点求均值。其中C就是车道线数量,N_c就是对应车道线所包含的像素点数量

后半部分的[x]_+,这个式子就是取max(0, x),因为损失值最小是0,因此如果里面的数小于0了,结果就是0。

再往里,||a-b||,这个就是求距离了,是二范数,也就是求个欧式距离。二者之间的距离如果比设定的像素点相似度阈值\delta _v,比如设为0.5,比这个还小,那么就认为他们确定属于一条线了,结果就是没有损失,就是0。如果比阈值大,就是有损失。

这样应该就能看明白第一个式子了,就是取一条车道线对应的所有像素点的均值\mu _c,然后用预测的属于这条车道线的所有像素点x_i,和均值计算距离,再减去阈值作为损失,如果距离很大,就有损失,距离小于设定的阈值,就没损失。就可以了。

2. L_dist

L_dist是距离损失,也就是两个车道线之间的距离,这个距离应该越大越好,因此,对距离取个负号,就变成了越小越好,就符合损失函数的特征了。上面式子的前一部分,也是用来求均值的,因为我们是要对两两之间求距离,也就是说,假如我们有3根车道线,分别为0,1,2,那么计算距离的时候,是计算了0-1  0-2  1-0   1-2   2-1  2-0之间的距离,正反都算了,因此总共算了C(C-1)这么多次。后半段式子里面的\delta _d,就是我们设定的两条线的距离阈值,比如设为3,要是比这个距离小,比如是1.2,那就有损失,要是两条线距离很大,是8,那说明已经很好了,就没损失了。

至于下面的alpha和beta,就是权重因子。假如距离损失一算,是4,5,6这么大的数,而方差损失一算,是0.04,0.03这么大的数,数量级不一样,那么就需要调整了,通过权重因子,把他们调整到同一个数量级。回归损失没有用到,就不说了。

二、代码

代码这里需要注意的是,计算过程中不要用a += b这种形式,而是要用a = a+b,否则无法求导。

def Discriminative_Loss(self, instance_label, embedding_out, delta_v=0.5, delta_d=3.0):
        # 一张一张地算
        embd_dim = embedding_out.shape[1]
        batch_size = embedding_out.shape[0]
        L_var = torch.tensor(0, dtype=embedding_out.dtype, device=embedding_out.device)
        L_dist = torch.tensor(0, dtype=embedding_out.dtype, device=embedding_out.device)

        for i in range(batch_size):
            # 对于每一条车道线,每个像素都有4维的embedding,因此,均值也是4维的
            img = embedding_out[i]
            label = instance_label[i]
            # 那么四条车道线,对应四个均值,就是4*4的,如果embedding是5维,那四条车道线的均值就是4*5的。

            labels = torch.unique(label)
            labels = labels[labels != 0]  # 1,2,3,4
            centroid_means = []
            for lane in labels:
                # 取出对于这条车道线,有像素的那些点的Mask
                mask = (label == lane)
                # 根据mask,取出点,每个点是4维的embedding
                masked_img = img[:, mask]

                mean_lane = torch.mean(masked_img, dim=1)
                centroid_means.append(mean_lane)
                # m个embedding后的像素点都减去均值(4,1),在第0个维度求范数,就会消去第0个维度,得到m个值
                L_var = L_var + torch.mean(
                    F.relu((torch.norm(masked_img - mean_lane.reshape(embd_dim, 1), dim=0)) - delta_v) ** 2) / len(
                    labels)
            # 堆叠起来,就得到了(num_lanes, embedding_dim)的四条车道线的均值,利用这个去求范数
            centroid_means = torch.stack(centroid_means)
            if len(labels) > 1:
                # 比如车道线4条,embedding 维度是5的话,前面堆叠之后的shape就是(4,5)
                # 变成2个,一个是(4,1,5),一个是(1,4,5)
                # 这样对这两个相减,在“5”这个维度上求范数,消去这个维度,得到的就是(4,4)的范数结果
                # 第i行第j列代表第i个线对第j个线求的范数,因此对角线是0,上下两部分对称
                c = len(labels)
                centroid_means1 = centroid_means.reshape(-1, 1, embd_dim)
                centroid_means2 = centroid_means.reshape(1, -1, embd_dim)
                dist = torch.norm(centroid_means1 - centroid_means2, dim=2)
                dist =dist+ torch.eye(c, dtype=dist.dtype, device=dist.device) * delta_d
                # 对角线加上delta_d,再按照公式求即可
                L_dist = L_dist + torch.sum((F.relu(-dist + delta_d) ** 2) / (c * (c - 1) * 2))
        L_var =L_var / batch_size
        L_dist =L_dist / batch_size
        return L_var, L_dist
  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值