💡💡💡本专栏所有程序均经过测试,均可成功执行💡💡💡
专栏地址:YOLOv8从入门改进到发论文——点击即可跳转 订阅专栏不迷路
在深度学习目标检测领域,YOLOv8成为了备受关注的模型之一。在发论文之前我们需要对YOLOv8的实验结果进行详细的分析。以此来证明我们改进的有效性。这就涉及到了实验结果重要性能的衡量指标。本文将手把手教学如何对YOLOv8的结果分析和重要性能指标进行分析,以帮助您更好地学习深度学习目标检测YOLO系列的挑战,发表更加优质的论文。
我们将重点讨论以下内容:
混淆矩阵,F1分数,查准率,查全率,PR曲线,wandb可视化,影响mAP的因素等
目录
2.4 可视化文件——events.out.tfevents
1. 重要性能衡量指标
1.1 混淆矩阵
混淆矩阵是用于评估分类模型性能的一种表格形式。它将模型的预测结果与真实标签进行比较,并将它们分类为四种不同的情况:真正例 (True Positive, TP)、真负例 (True Negative, TN)、假正例 (False Positive, FP) 和假负例 (False Negative, FN)。
在混淆矩阵中,行表示实际类别,列表示预测类别。这个矩阵的一个简单示例是:
Predicted Negative | Predicted Positive | |
---|---|---|
Actual Negative | TN | FP |
Actual Positive | FN | TP |
其中:
-
TP(真正例):模型正确地将猫标记为猫的数量。例如,图像中确实有一只猫,而模型也成功地将其检测为猫。
-
TN(真负例):模型正确地将非猫标记为非猫的数量。例如,图像中没有猫,而模型也正确地将其识别为非猫【其他类别】。
-
FP(假正例):模型错误地将非猫标记为猫的数量。例如,图像中没有猫,但模型错误地将一只狗误判为猫。
-
FN(假负例):模型错误地将猫标记为非猫的数量。例如,图像中有一只猫,但模型未能将其识别为猫。
1.2 查准率,查全率,F1-Score
Metric | Formula | Purpose |
---|---|---|
准确率 (Accuracy) | (TP+TN)/(TP+TN+FP+FN) | 准确率是指模型正确预测的样本数量与总样本数量之比。 |
精确率 (Precision) | TP / (TP+FP) | 评估模型在预测为正例的样本中的准确程度 |
召回率 (Recall) | TP / (TP+FN) | 评估模型对正例的预测能力 |
F1 分数 (F1 Score) | (2×Precision×Recall) / (Precision+Recall) | 综合考虑精确率和召回率的调和平均值,综合评估模型的性能 |
下图是为了方便查看公式,更加直观
具体的例子:
1. 准确率(Accuracy):准确率是指模型正确预测的样本数量占总样本数量的比例。
举例:在10