YOLOv8入门 | mAP、FPS、F1score重要性能衡量指标、训练结果评价及分析及影响mAP的因素【发论文关注的指标】


💡💡💡本专栏所有程序均经过测试,均可成功执行💡💡💡


专栏地址YOLOv8从入门改进到发论文——点击即可跳转 订阅专栏不迷路

在深度学习目标检测领域,YOLOv8成为了备受关注的模型之一。在发论文之前我们需要对YOLOv8的实验结果进行详细的分析。以此来证明我们改进的有效性。这就涉及到了实验结果重要性能的衡量指标。本文将手把手教学如何对YOLOv8的结果分析和重要性能指标进行分析,以帮助您更好地学习深度学习目标检测YOLO系列的挑战,发表更加优质的论文。

我们将重点讨论以下内容:

混淆矩阵,F1分数,查准率,查全率,PR曲线,wandb可视化,影响mAP的因素

目录

1. 重要性能衡量指标

1.1 混淆矩阵

1.2 查准率,查全率,F1-Score

1.3 PR曲线

1.4 AP与mAP

2. 训练结果评价

2.1权重文件夹——weights

2.2 混淆矩阵——Confusion Matrix

2.3 F1分数——F1-score

2.4 可视化文件——events.out.tfevents

2.5 args.yaml

2.6 P曲线——P_curve

2.8 PR曲线——PR_curve 

2.9 result——损失函数、mAP可视化结果

2.10 数据集信息——label.jpg

3.影响mAP的因素

4. 优化策略


1. 重要性能衡量指标

1.1 混淆矩阵

混淆矩阵是用于评估分类模型性能的一种表格形式。它将模型的预测结果与真实标签进行比较,并将它们分类为四种不同的情况:真正例 (True Positive, TP)、真负例 (True Negative, TN)、假正例 (False Positive, FP) 和假负例 (False Negative, FN)。

在混淆矩阵中,行表示实际类别,列表示预测类别。这个矩阵的一个简单示例是:

Predicted Negative Predicted Positive
Actual Negative TN FP
Actual Positive FN TP

其中:

  • TP(真正例):模型正确地将猫标记为猫的数量。例如,图像中确实有一只猫,而模型也成功地将其检测为

  • TN(真负例):模型正确地将非猫标记为非猫的数量。例如,图像中没有猫,而模型也正确地将其识别为非猫【其他类别】

  • FP(假正例):模型错误地将非猫标记为猫的数量。例如,图像中没有猫,但模型错误地将一只狗误判为猫

  • FN(假负例):模型错误地将猫标记为非猫的数量。例如,图像中有一只猫,但模型未能将其识别为猫

1.2 查准率,查全率,F1-Score

Metric Formula Purpose
准确率 (Accuracy) (TP+TN)/(TP+TN+FP+FN) 准确率是指模型正确预测的样本数量与总样本数量之比。
精确率 (Precision) TP / (TP+FP) 评估模型在预测为正例的样本中的准确程度
召回率 (Recall) TP / (TP+FN) 评估模型对正例的预测能力
F1 分数 (F1 Score) (2×Precision×Recall) / (Precision+Recall) 综合考虑精确率和召回率的调和平均值,综合评估模型的性能

下图是为了方便查看公式,更加直观

img

具体的例子:

1. 准确率(Accuracy):准确率是指模型正确预测的样本数量占总样本数量的比例。

举例:在10

YOLOv8是目前比较先进的一种目标检测算法,它是YOLO系列算法的最新版本。在训练评价模型时,通常会使用一些标准指标衡量模型的性能。YOLOv8可能使用的评价指标包括但不限于以下几种: 1. 平均精度均值(Mean Average Precision, mAP):这是目标检测任务中非常常见的评价指标mAP是在不同的召回率下平均的精确度值,用于衡量模型对检测到的对象进行分类的准确性。mAP通常在某个特定的交并比(Intersection over Union, IoU)阈值下计算,比如mAP@0.5。 2. 精确度(Precision):精确度是指模型预测为正例的样本中,真正为正例的比例。它反映的是模型对正例样本预测的准确程度。 3. 召回率(Recall):召回率是指所有真正为正例的样本中,模型正确识别出来的比例。它反映的是模型能够识别出所有正例的能力。 4. F1分数(F1 Score):F1分数是精确度和召回率的调和平均数,用于评估模型的平衡性。在精确度和召回率都很重要的情况下,F1分数是一个综合评价指标。 5. IoU(Intersection over Union):IoU是衡量模型预测边界框与真实边界框重叠程度的一个指标,值越大表示重叠度越高,模型的定位越准确。 6. 检测速度:除了准确性之外,实际应用中还会关心模型的运行速度,即每秒可以处理的帧数(Frames Per Second, FPS)。 7. 参数量和计算复杂度:模型的大小(参数量)以及计算复杂度也是评价指标之一,这关系到模型是否可以在资源受限的设备上部署。 这些指标可以从不同的角度衡量YOLOv8模型的性能,包括准确性、效率和模型大小等。在实际使用中,根据具体的应用场景和需求,可能会侧重于不同的指标
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值