数学基础 -- 微积分之乘积法则求导

微积分中的乘积法则求导

微积分中的乘积法则用于对两个函数的乘积进行求导。其表达形式为:

如果 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 是两个关于 x x x 的可微函数,则它们乘积 f ( x ) g ( x ) f(x)g(x) f(x)g(x) 的导数可以表示为:

( f ( x ) g ( x ) ) ′ = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) (f(x)g(x))' = f'(x)g(x) + f(x)g'(x) (f(x)g(x))=f(x)g(x)+f(x)g(x)

用语言来解释就是:
“两个函数的乘积的导数等于第一个函数的导数乘以第二个函数,再加上第一个函数乘以第二个函数的导数。”

证明

乘积法则可以通过如下过程来证明:

  1. 定义函数 h ( x ) = f ( x ) g ( x ) h(x) = f(x)g(x) h(x)=f(x)g(x)

  2. 利用导数的定义:
    h ′ ( x ) = lim ⁡ Δ x → 0 h ( x + Δ x ) − h ( x ) Δ x h'(x) = \lim_{\Delta x \to 0} \frac{h(x+\Delta x) - h(x)}{\Delta x} h(x)=Δx0limΔxh(x+Δx)h(x)
    其中 h ( x + Δ x ) = f ( x + Δ x ) g ( x + Δ x ) h(x+\Delta x) = f(x+\Delta x)g(x+\Delta x) h(x+Δx)=f(x+Δx)g(x+Δx)

  3. 我们对 h ( x + Δ x ) − h ( x ) h(x + \Delta x) - h(x) h(x+Δx)h(x) 进行变形:
    h ( x + Δ x ) − h ( x ) = f ( x + Δ x ) g ( x + Δ x ) − f ( x ) g ( x ) h(x + \Delta x) - h(x) = f(x + \Delta x)g(x + \Delta x) - f(x)g(x) h(x+Δx)h(x)=f(x+Δx)g(x+Δx)f(x)g(x)

  4. 接着,将这个差值拆分:
    = [ f ( x + Δ x ) g ( x + Δ x ) − f ( x ) g ( x + Δ x ) ] + [ f ( x ) g ( x + Δ x ) − f ( x ) g ( x ) ] = [f(x + \Delta x)g(x + \Delta x) - f(x)g(x + \Delta x)] + [f(x)g(x + \Delta x) - f(x)g(x)] =[f(x+Δx)g(x+Δx)f(x)g(x+Δx)]+[f(x)g(x+Δx)f(x)g(x)]
    = [ f ( x + Δ x ) − f ( x ) ] g ( x + Δ x ) + f ( x ) [ g ( x + Δ x ) − g ( x ) ] = [f(x + \Delta x) - f(x)]g(x + \Delta x) + f(x)[g(x + \Delta x) - g(x)] =[f(x+Δx)f(x)]g(x+Δx)+f(x)[g(x+Δx)g(x)]

  5. 将这个表达式代入导数定义:
    h ′ ( x ) = lim ⁡ Δ x → 0 ( [ f ( x + Δ x ) − f ( x ) ] g ( x + Δ x ) Δ x + f ( x ) [ g ( x + Δ x ) − g ( x ) ] Δ x ) h'(x) = \lim_{\Delta x \to 0} \left( \frac{[f(x + \Delta x) - f(x)]g(x + \Delta x)}{\Delta x} + \frac{f(x)[g(x + \Delta x) - g(x)]}{\Delta x} \right) h(x)=Δx0lim(Δx[f(x+Δx)f(x)]g(x+Δx)+Δxf(x)[g(x+Δx)g(x)])

  6. 利用极限的性质,当 Δ x → 0 \Delta x \to 0 Δx0 时, g ( x + Δ x ) → g ( x ) g(x + \Delta x) \to g(x) g(x+Δx)g(x),所以第一个极限项可以写为:
    lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x g ( x ) = f ′ ( x ) g ( x ) \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} g(x) = f'(x)g(x) Δx0limΔxf(x+Δx)f(x)g(x)=f(x)g(x)

  7. 第二个极限项:
    lim ⁡ Δ x → 0 f ( x ) g ( x + Δ x ) − g ( x ) Δ x = f ( x ) g ′ ( x ) \lim_{\Delta x \to 0} f(x) \frac{g(x + \Delta x) - g(x)}{\Delta x} = f(x)g'(x) Δx0limf(x)Δxg(x+Δx)g(x)=f(x)g(x)

  8. 最终得到:
    h ′ ( x ) = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) h'(x) = f'(x)g(x) + f(x)g'(x) h(x)=f(x)g(x)+f(x)g(x)

举个例子

假设我们要求 y = x 2 sin ⁡ ( x ) y = x^2 \sin(x) y=x2sin(x) 的导数,这里 f ( x ) = x 2 f(x) = x^2 f(x)=x2 g ( x ) = sin ⁡ ( x ) g(x) = \sin(x) g(x)=sin(x)

根据乘积法则,导数为:
y ′ = ( x 2 ) ′ sin ⁡ ( x ) + x 2 ( sin ⁡ ( x ) ) ′ y' = (x^2)' \sin(x) + x^2 (\sin(x))' y=(x2)sin(x)+x2(sin(x))
其中:
( x 2 ) ′ = 2 x , ( sin ⁡ ( x ) ) ′ = cos ⁡ ( x ) (x^2)' = 2x, \quad (\sin(x))' = \cos(x) (x2)=2x,(sin(x))=cos(x)

因此:
y ′ = 2 x sin ⁡ ( x ) + x 2 cos ⁡ ( x ) y' = 2x \sin(x) + x^2 \cos(x) y=2xsin(x)+x2cos(x)

这是 x 2 sin ⁡ ( x ) x^2 \sin(x) x2sin(x) 的导数。

总结

乘积法则是求导中的一种基础技巧,特别是在两个函数相乘的情形下。掌握它可以让我们轻松处理复杂的函数求导问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值