NVIDIA Jetson Nano的国产替代,基于算能BM1684X+FPGA+AI算力盒子,支持deepseek边缘部署

NVIDIA Jetson Nano的国产替代,基于算能BM1684X的AI算力盒子,支持deepseek边缘部署

另外,还提供BM1684X+FPGA+AI的解决方案。

图片

核心板基于Sophon SG2300X SoC(也叫BM1684X)打造

图片

带有8核ARM Cortex-A53 @2.3GHz,频率很高。

图片

带有TPU(张量处理器)

算力可达32TOPS@int816TFLOPS(FP16/BF16)

和2TFLOPS(FP32)

支持TensorFlow、Caffe、PyTorch、Paddle、ONNX、MXNet、Tengine、DarkNet等深度学习框架。

图片

视频处理单元(VPU)支持32路H.265/H.264 1080P@25fps解码12路编码

图片

JPEG编解码支持1080P@600fps,最大分辨率32768×32768,后处理功能涵盖图像缩放、裁剪、色彩空间转换等。

搭配16GB LPDDR4X内存,看芯片框图,似乎是四个4GB内存芯片,可能是四通道,这样的话,速度应该还可以。

图片

64GB eMMC 5.1,16MB SPI Flash

核心板通过144P的板对板连接器安装到扩展板上,引出了不少接口。
扩展板带有M.2 E Key(用于安装Wi-Fi/BT)、M.2 2230 NVMe SSD
外面有两个USB3.0 HOST接口,两个千兆网口

图片

一个USB Type-C电源接口支持PD供电,电压支持20V输入,支持20V3.25A或者更高,也就是支持65W以上的电源。

一个USB Type-C Debug UART接口,MicroSD卡槽。

工作温度0~40℃。

尺寸104×84×52mm

系统上,官方提供了两个镜像,一个是基础镜像,基于Ubuntu Server 20.04,仅包含 Sophon 基础 SDK 和后台,只有1.2GB。

还有一个基于Ubuntu Server 20.04,包含Sophon SDK和后台,预装瑞莎LLM前端,预装CasaOS,常见LLM的Demo的完整版镜像,大小来到了9.5GB。

图片

而这个AirBox的亮点也就在于预装了CasaOS,极大的的简化了部署大模型的门槛,部署各类大模型都相当轻松

图片

官方完整版镜像默认预装了Stable Diffusion

部署whisper,chatglm2 chatdoc chatbot

imagesearch,llama3也非常轻松,只需要简单几步就部署完成了,搞这些在Linux下变得轻松愉快。

你也可以自己打包Docker镜像,官方也有教程可以参考,这样之后部署这些都会变得相当简单。

而重头戏其实是本地部署LLM大语言模型,可以部署

chatglm2 chatdoc chatbot

图片

Llama3,Qwen2,DeepSeek R1
官方介绍了deepseek-r1-distill-qwen-1.5b和deepseek-r1-distill-qwen-7b两个Qwen2.5蒸馏模型的部署。

都采用的INT4量化方式,目前1.5B的模型,在AirBox上,推理速度可达30.448tokens/s7B的模型,推理速度可达11.008tokens/s

图片

Llama3 8B模型推理速度可达9.566token/s

图片

文生图大模型支持Stable Diffusion1.5Real ESRGAN,Stable Diffusion 3 Medium,FLUX.1这些模型的部署,且都能正常运行。
在Stable Diffusion1.5下生成一个512x512的图片,在7秒左右。

图片

除此之外还支持Image Search文本搜索图片Video Search文本搜索视频,向量搜索模型应用。

图片

支持Emoti VoiceWhisper这些TTS/STT模型的部署。还有MiniCPM-V2.6这个视觉多模态模型。

想要更多模型,Radxa也准备了Model-Zoo,可以部署目标检测,语义分割,人脸检测各种算法应用。

图片

Radxa还提供了TPU-MLIR编译器工具链,用于将各种不同框架下预训练的神经网络模型转化为可以在算能TPU上运行的bmodel格式模型。

可以直接支持PyTorch, ONNX, Caffe 和 TFLite。其他框架的模型需要转换为ONNX模型。

转换完之后,Radxa还提供了TPU-PERF用于TPU加载/推理经过TPU-MLIR转换好的bmodel模型

图片

### DeepSeek在分布式边缘计算中的部署 #### 架构概述 DeepSeek是一个专用于分布式全批量训练和小批量训练的软件框架[^1]。该架构旨在优化深度神经网络(DNN)模型在移动设备与云端之间的协作计过程,从而实现高效的分布式边缘计算。 #### 部署流程 为了适应动态带宽环境下的需求变化,DeepSeek采用了一种预处理机制来构建配置映射构造器。这一过程涉及两个主要阶段: - **离线生成阶段** 在此期间,系统会基于历史数据创建一个描述不同带宽条件对应最佳性能参数集的地图——即所谓的“配置图”。这一步骤确保了即使在网络状况波动的情况下也能快速找到合适的调整方案[^4]。 ```python # 假设我们有一个函数可以获取当前系统的带宽情况 current_bandwidth = get_current_bandwidth() # 使用预先建立好的配置图查找最适合当前带宽的状态 optimal_configuration = configuration_map[current_bandwidth] ``` - **在线调优阶段** 当实际运行时,应用程序能够实时监测到最新的连接质量,并据此查询之前准备好的配置表以决定采取何种措施来进行最有效的资源分配。这种灵活响应的方式极大地提高了整体效率和服务可靠性。 #### 实际应用案例 考虑到区块链技术和边缘计算对于低延迟通信的要求[C: The requirements of Blockchain and Edge Computing][^2],DeepSeek特别适合应用于此类场景中。通过引入新的合作计方法,可以在不影响用户体验的前提下显著降低功耗并提升处理速度[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值