【COLING2022教程】面向自然语言处理的知识图谱嵌入:从理论到实践

3048a5d4a4b1171915b6c1b8d9e37e9b.png

来源:专知
本文为教程介绍,建议阅读5分钟知识图谱嵌入是监督学习模型,学习带标签、有向多图的节点和边的向量表示。

20a43d7a61c1eceed5df734ede320195.png

知识图谱嵌入是监督学习模型,学习带标签、有向多图的节点和边的向量表示。我们描述了它们的设计原理,并解释了为什么它们在图表示学习和更广泛的NLP社区中受到越来越多的关注。我们强调了它们的局限性、开放的研究方向和真实世界的用例。除了理论概述之外,我们还提供了一个handson会议,在那里我们展示了如何在实践中使用这些模型。

https://kge4nlp-coling22.github.io/

daa98570fae23908e5c17db342da746d.png

2ef058ce2de0d7549f479737e84cbb3b.png

22272f9d18bcc199a5dec14638c429fe.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值