知识图谱de构建与应用(二):知识的表示和建模

本文介绍了知识表示技术的发展,包括基于符号逻辑、面向互联网和连续向量的方法。知识建模方面,讲解了基于专家和机器学习的知识建模流程,以及在商品知识建模的实践和应用场景。最后,讨论了知识建模技术的未来发展和知识体系设计的重要性。

目录

2.1 知识表示简介

2.1.1 基于符号逻辑的知识表示方法

2.1.2 面向互联网的知识表示方法

2.1.3 基于连续向量的知识表示

2.2 行业知识建模

2.2.1 基于专家的知识建模

2.2.2 基于机器学习的知识建模

2.3 商品知识建模实践

2.3.1 术语抽取

2.3.2 商品概念及上下位关系生成

2.4 构建商品知识体系

2.4.1 通用域知识图谱

2.4.2 阿里商品域知识体系

2.5 商品知识建模应用场景

2.5.1 服务国家和社会机构应用

2.5.2 零售业务应用

2.6 小结

2.6.1 知识建模技术的未来发展

2.6.2 知识体系设计的未来发展


本章首先介绍知识表示技术的演变过程;然后介绍行业知识建模的常用方式;接着给出在工业应用场景中商品知识建模的实践案例,并重点介绍与电商领域知识图谱相关的知识体系;最后介绍商品知识建模的应用场景和未来展望。

2.1 知识表示简介

机器只有掌握大量的知识,特别是常识知识,才能实现真正类人的智能。知识表示将现实世界中的各类知识表达成计算机可存储和计算的结构。知识表示技术的变化大致可以分为三个阶段:1)基于符号逻辑进行知识表示和推理,逻辑表示与人类的自然语言比较接近,是最早使用的一种知识表示方法;2)随着语义网概念的提出,万维网内容的知识表示技术逐渐兴起,当前在工业界大规模应用的多为基于资源描述框架三元组的表示方法;3)随着自然语言处理领域词向量(Word Embedding)[1]等向量表示[2](Embedding)技术手段的出现,采用连续向量方式表示知识的研究正在逐渐兴起,与符号逻辑为基础知识表示方法相融合,成为现阶段知识表示的研究热点[1]

2.1.1 基于符号逻辑的知识表示方法

1.一阶谓词逻辑

一阶谓词逻辑(First Order Logic)是以数理逻辑为基础,通过命题、逻辑联结词、谓词与量词等组成的知识表示,形式上接近于自然语言且方便存储在计算机中,是一种最

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值