目录
本章首先介绍知识表示技术的演变过程;然后介绍行业知识建模的常用方式;接着给出在工业应用场景中商品知识建模的实践案例,并重点介绍与电商领域知识图谱相关的知识体系;最后介绍商品知识建模的应用场景和未来展望。
2.1 知识表示简介
机器只有掌握大量的知识,特别是常识知识,才能实现真正类人的智能。知识表示将现实世界中的各类知识表达成计算机可存储和计算的结构。知识表示技术的变化大致可以分为三个阶段:1)基于符号逻辑进行知识表示和推理,逻辑表示与人类的自然语言比较接近,是最早使用的一种知识表示方法;2)随着语义网概念的提出,万维网内容的知识表示技术逐渐兴起,当前在工业界大规模应用的多为基于资源描述框架三元组的表示方法;3)随着自然语言处理领域词向量(Word Embedding)[1]等向量表示[2](Embedding)技术手段的出现,采用连续向量方式表示知识的研究正在逐渐兴起,与符号逻辑为基础知识表示方法相融合,成为现阶段知识表示的研究热点[1]。
2.1.1 基于符号逻辑的知识表示方法
1.一阶谓词逻辑
一阶谓词逻辑(First Order Logic)是以数理逻辑为基础,通过命题、逻辑联结词、谓词与量词等组成的知识表示,形式上接近于自然语言且方便存储在计算机中,是一种最
本文介绍了知识表示技术的发展,包括基于符号逻辑、面向互联网和连续向量的方法。知识建模方面,讲解了基于专家和机器学习的知识建模流程,以及在商品知识建模的实践和应用场景。最后,讨论了知识建模技术的未来发展和知识体系设计的重要性。
订阅专栏 解锁全文
1056

被折叠的 条评论
为什么被折叠?



