【AAAI2024】基于波动的自适应结构化修剪方法,用于大型语言模型

226c4d7364f4b95b7076040e58de662d.png

来源:专知
本文为论文介绍,建议阅读5分钟
在本文中,我们提出了一种新颖的针对LLMs的无需重新训练的结构化修剪框架,命名为FLAP(基于波动的自适应结构化修剪)。

f3888c38ea477f6ad748523ac48c2475.png

网络修剪是解决大型语言模型(LLMs)部署和推理中巨大计算资源需求的有前景的方法。对于LLMs的修剪方法来说,无需重新训练是重要的。然而,几乎所有现有的LLMs无需重新训练的修剪方法都集中在非结构化修剪上,这需要特定硬件支持才能加速。在本文中,我们提出了一种新颖的针对LLMs的无需重新训练的结构化修剪框架,命名为FLAP(基于波动的自适应结构化修剪)。它通过有效减少存储和提高推理速度,对硬件友好。为了有效地对LLMs进行结构化修剪,我们强调了三个需高度关注的关键要素:制定结构化重要性指标、自适应搜索全局压缩模型和实施补偿机制以减轻性能损失。首先,FLAP基于波动修剪指标判断移除权重列时输出特征图是否容易恢复。然后它标准化重要性分数以自适应地确定全局压缩模型结构。最后,FLAP添加额外的偏置项使用基线值来恢复输出特征图。我们在各种语言基准上全面评估了我们的方法。在无需任何重新训练的情况下,我们的方法显著优于包括LLM-Pruner和Wanda在内的结构化修剪领域的最新方法。代码发布在https://github.com/CASIA-IVA-Lab/FLAP。

250782636ee87d4a942a4d86817c3fd3.png

832c87cdbef009476c2daf3376b84605.png

### AAAI 2024 自然语言处理论文主题 AAAI 2024会议涵盖了多个前沿研究领域,其中包括自然语言处理(NLP)[^1]。NLP作为人工智能的一个重要分支,在本次会议上展示了广泛的研究成果和技术进展。 #### 主要话题方向: - **对话系统与交互模型** 深入探讨了如何构建更加智能和人性化的聊天机器人以及语音助手,旨在提高人机交流的质量和效率[^2]。 - **机器翻译技术进步** 聚焦于多语种之间的精准转换方法论创新,特别是低资源语言的支持策略研究,推动全球化背景下的信息无障碍沟通目标实现。 - **文本生成与创作能力提升** 探索利用深度学习框架来增强计算机自动生成高质量文学作品、新闻报道等内容的可能性,同时保持风格一致性并满足特定需求场景的要求。 - **情感分析和社会媒体挖掘** 通过大规模社交网络数据集训练算法模型,以更好地理解公众情绪倾向及其背后的社会文化因素影响机制;这有助于企业品牌管理及政府舆情监控等方面的应用实践。 ```python # 示例代码展示了一个简单的基于Transformer架构的情感分类器 import torch.nn as nn from transformers import BertModel class SentimentClassifier(nn.Module): def __init__(self, num_classes=2): super(SentimentClassifier, self).__init__() self.bert = BertModel.from_pretrained('bert-base-uncased') self.fc = nn.Linear(768, num_classes) def forward(self, input_ids, attention_mask=None): outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask) logits = self.fc(outputs.pooler_output) return logits ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值