使用FP8加速PyTorch训练的两种方法总结

819d0a787945842e8441f7e2b4b172fe.png

来源:DeepHub IMBA
本文约3100字,建议阅读6分钟
本文介绍了如何使用FP8来提高训练效率。

在PyTorch中,FP8(8-bit 浮点数)是一个较新的数据类型,用于实现高效的神经网络训练和推理。它主要被设计来降低模型运行时的内存占用,并加快计算速度,同时尽量保持训练和推理的准确性。虽然PyTorch官方在标准发布中尚未全面支持FP8,但是在2.2版本中PyTorch已经包含了对FP8的“有限支持”并且出现了2个新的变量类型,torch.float8_e4m3fn和 torch.float8_e5m2 ,而H100也支持这种类型,所以这篇文章我们就来介绍如何使用FP8来提高训练效率。

e3f93e2a7751aaabf0234d78ea321d22.jpeg

模型架构

我们定义了一个Vision Transformer (ViT)支持的分类模型(使用流行的timm Python包版本0.9.10)以及一个随机生成的数据集。我们选择了ViT-Huge的有6.32亿个参数的最大的模型,这样可以演示FP8的效果。

import torch, time
 import torch.optim
 import torch.utils.data
 import torch.distributed as dist
 from torch.nn.parallel.distributed import DistributedDataParallel as DDP
 import torch.multiprocessing as mp


 # modify batch size according to GPU memory
 batch_size = 64


 from timm.models.vision_transformer import VisionTransformer


 from torch.utils.data import Dataset




 # use random data
 class FakeDataset(Dataset):
    def __len__(self):
        return 1000000


    def __getitem__(self, index):
        rand_image = torch.randn([3, 224, 224], dtype=torch.float32)
        label = torch.tensor(data=[index % 1000], dtype=torch.int64)
        return rand_image, label




 def mp_fn(local_rank, *args):
    # configure process
    dist.init_process_group("nccl",
                            rank=local_rank,
                            world_size=torch.cuda.device_count())
    torch.cuda.set_device(local_rank)
    device = torch.cuda.current_device()


    # create dataset and dataloader
    train_set = FakeDataset()
    train_loader = torch.utils.data.DataLoader(
        train_set, batch_size=batch_size,
        num_workers=12, pin_memory=True)


    # define ViT-Huge model
    model = VisionTransformer(
            embed_dim=1280,
            depth=32,
            num_heads=16,
        ).cuda(device)
    model = DDP(model, device_ids=[local_rank])


    # define loss and optimizer
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)


    model.train()


    t0 = time.perf_counter()
    summ = 0
    count = 0


    for step, data in enumerate(train_loader):
        # copy data to GPU
        inputs = data[0].to(device=device, non_blocking=True)
        label = data[1].squeeze(-1).to(device=device, non_blocking=True)


        # use mixed precision to take advantage of bfloat16 support
        with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
            outputs = model(inputs)
            loss = criterion(outputs, label)
        optimizer.zero_grad(set_to_none=True)
        loss.backward()
        optimizer.step()


        # capture step time
        batch_time = time.perf_counter() - t0
        if step > 10: # skip first steps
            summ += batch_time
            count += 1
        t0 = time.perf_counter()
        if step > 50:
            break
    print(f'average step time: {summ/count}')




 if __name__ == '__main__':
    mp.spawn(mp_fn,
              args=(),
              nprocs=torch.cuda.device_count(),
              join=True)

Transformer Engine

PyTorch(版本2.1)不包括FP8的数据类型。所以我们需要通过第三方的库Transformer Engine (TE),这是一个用于在NVIDIA gpu上加速Transformer模型的专用库。

使用FP8要比16float16和bfloat16复杂得多。这里我们不用关心细节,因为TE都已经帮我们实现了,我们只要拿来用就可以了。

但是需要对我们上面的模型进行一些简单的修改,需要将transformer变为TE的专用transformer层。

import transformer_engine.pytorch as te
 from transformer_engine.common import recipe




 class TE_Block(te.transformer.TransformerLayer):
    def __init__(
            self,
            dim,
            num_heads,
            mlp_ratio=4.,
            qkv_bias=False,
            qk_norm=False,
            proj_drop=0.,
            attn_drop=0.,
            init_values=None,
            drop_path=0.,
            act_layer=None,
            norm_layer=None,
            mlp_layer=None
    ):
        super().__init__(
            hidden_size=dim,
            ffn_hidden_size=int(dim * mlp_ratio),
            num_attention_heads=num_heads,
            hidden_dropout=proj_drop,
            attention_dropout=attn_drop
            )

然后修改VisionTransformer初始化使用自定义层:

model = VisionTransformer(
      embed_dim=1280,
      depth=32,
      num_heads=16,
      block_fn=TE_Block
      ).cuda(device)

最后一个修改是用te包裹模型前向传递。Fp8_autocast上下文管理器。此更改需要支持FP8的GPU:

with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
    with te.fp8_autocast(enabled=True):
        outputs = model(inputs)
    loss = criterion(outputs, label)

下面我们就可以测试结果:

16dd2d4739ea37362195a6485ff54150.jpeg

可以看到,使用TE块提高了p4d(~19%)和p5(~32%)的性价比。使用FP8可将p5上的性能额外提高约20%。在TE和FP8优化之后,基于h100的p5.48large的性价比优于基于a100的p4d.24large 。并且训练速度提高了3倍。

Pytorch的原生FP8

在2.2版本后,pytorch原生FP8支持已经是“有限支持”了,所以我们可以先学习一下如何使用了。

import torch
 from tabulate import tabulate


 f32_type = torch.float32
 bf16_type = torch.bfloat16
 e4m3_type = torch.float8_e4m3fn
 e5m2_type = torch.float8_e5m2


 # collect finfo for each type
 table = []
 for dtype in [f32_type, bf16_type, e4m3_type, e5m2_type]:
    numbits = 32 if dtype == f32_type else 16 if dtype == bf16_type else 8
    info = torch.finfo(dtype)
    table.append([info.dtype, numbits, info.max,
                  info.min, info.smallest_normal, info.eps])


 headers = ['data type', 'bits', 'max', 'min', 'smallest normal', 'eps']
 print(tabulate(table, headers=headers))


 '''
 Output:


 data type     bits         max           min smallest normal         eps
 ------------- ---- ----------- ------------ --------------- -----------
 float32         32 3.40282e+38 -3.40282e+38     1.17549e-38 1.19209e-07
 bfloat16         16 3.38953e+38 -3.38953e+38     1.17549e-38   0.0078125
 float8_e4m3fn     8         448         -448         0.015625       0.125
 float8_e5m2       8       57344       -57344     6.10352e-05         0.25
 '''

我们可以通过在张量初始化函数中指定dtype来创建FP8张量,如下所示:

device="cuda"
 e4m3 = torch.tensor(1., device=device, dtype=e4m3_type)
 e5m2 = torch.tensor(1., device=device, dtype=e5m2_type)

也可以强制转换为FP8。在下面的代码中,我们生成一个随机的浮点张量,并比较将它们转换为四种不同的浮点类型的结果:

x = torch.randn(2, 2, device=device, dtype=f32_type)
 x_bf16 = x.to(bf16_type)
 x_e4m3 = x.to(e4m3_type)
 x_e5m2 = x.to(e5m2_type)


 print(tabulate([[‘float32’, *x.cpu().flatten().tolist()],
                [‘bfloat16’, *x_bf16.cpu().flatten().tolist()],
                [‘float8_e4m3fn’, *x_e4m3.cpu().flatten().tolist()],
                [‘float8_e5m2’, *x_e5m2.cpu().flatten().tolist()]],
                headers=[‘data type’, ‘x1’, ‘x2’, ‘x3’, ‘x4’]))


 '''
 The sample output demonstrates the dynamic range of the different types:


 data type                 x1             x2             x3             x4
 ------------- -------------- -------------- -------------- --------------
 float32       2.073093891143 -0.78251332044 -0.47084918620 -1.32557279110
 bfloat16       2.078125       -0.78125       -0.4707031     -1.328125
 float8_e4m3fn 2.0             -0.8125         -0.46875       -1.375
 float8_e5m2   2.0             -0.75           -0.5           -1.25
 ------------- -------------- -------------- -------------- --------------
 '''

虽然创建FP8张量很容易,但FP8张量上执行一些基本的算术运算是不支持的。并且需要特定的函数,比如torch._scaled_mm来进行矩阵乘法。

output, output_amax = torch._scaled_mm(
        torch.randn(16,16, device=device).to(e4m3_type),
        torch.randn(16,16, device=device).to(e4m3_type).t(),
        bias=torch.randn(16, device=device).to(bf16_type),
        out_dtype=e4m3_type,
        scale_a=torch.tensor(1.0, device=device),
        scale_b=torch.tensor(1.0, device=device)
    )

那么如何进行模型的训练呢,我们来做一个演示:

import torch
 from timm.models.vision_transformer import VisionTransformer
 from torch.utils.data import Dataset, DataLoader
 import os
 import time


 #float8 imports
 from float8_experimental import config
 from float8_experimental.float8_linear import Float8Linear
 from float8_experimental.float8_linear_utils import (
    swap_linear_with_float8_linear,
    sync_float8_amax_and_scale_history
 )


 #float8 configuration (see documentation)
 config.enable_amax_init = False
 config.enable_pre_and_post_forward = False


 # model configuration controls:
 fp8_type = True # toggle to change floating-point precision
 compile_model = True # toggle to enable model compilation
 batch_size = 32 if fp8_type else 16 # control batch size


 device = torch.device('cuda')


 # use random data
 class FakeDataset(Dataset):
    def __len__(self):
        return 1000000
    def __getitem__(self, index):
        rand_image = torch.randn([3, 256, 256], dtype=torch.float32)
        label = torch.tensor(data=[index % 1024], dtype=torch.int64)
        return rand_image, label


 # get data loader
 def get_data(batch_size):
    ds = FakeDataset()
    return DataLoader(
            ds,
            batch_size=batch_size,
            num_workers=os.cpu_count(),
            pin_memory=True
          )


 # define the timm model
 def get_model():
    model = VisionTransformer(
        class_token=False,
        global_pool="avg",
        img_size=256,
        embed_dim=1280,
        num_classes=1024,
        depth=32,
        num_heads=16
    )
    if fp8_type:
        swap_linear_with_float8_linear(model, Float8Linear)
    return model


 # define the training step
 def train_step(inputs, label, model, optimizer, criterion):
    with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
        outputs = model(inputs)
        loss = criterion(outputs, label)
    optimizer.zero_grad(set_to_none=True)
    loss.backward()
    if fp8_type:
        sync_float8_amax_and_scale_history(model)
    optimizer.step()




 model = get_model()
 optimizer = torch.optim.Adam(model.parameters())
 criterion = torch.nn.CrossEntropyLoss()
 train_loader = get_data(batch_size)


 # copy the model to the GPU
 model = model.to(device)
 if compile_model:
    # compile model
    model = torch.compile(model)
 model.train()


 t0 = time.perf_counter()
 summ = 0
 count = 0


 for step, data in enumerate(train_loader):
    # copy data to GPU
    inputs = data[0].to(device=device, non_blocking=True)
    label = data[1].squeeze(-1).to(device=device, non_blocking=True)


    # train step
    train_step(inputs, label, model, optimizer, criterion)


    # capture step time
    batch_time = time.perf_counter() - t0
    if step > 10: # skip first steps
        summ += batch_time
        count += 1
    t0 = time.perf_counter()
    if step > 50:
        break


 print(f'average step time: {summ / count}')

这里需要特定的转换函数,将一些操作转换为支持FP8的版本,需要说明的是,因为还在试验阶段所以可能不稳定。

b2c8add995e8a46819d6bef84cfc6df5.jpeg

FP8线性层的使用使我们的模型的性能比我们的基线实验提高了47%(!!)

对比TE

e56e660fd424f0564a665127a9e55d7f.jpeg

未编译的TE FP8模型的性能明显优于我们以前的FP8模型,但编译后的PyTorch FP8模型提供了最好的结果。因为TE FP8模块不支持模型编译。所以使用torch.compile会导致“部分编译”,即它在每次使用FP8时将计算分拆为多个图。

总结

在这篇文章中,我们演示了如何编写PyTorch训练脚本来使用8位浮点类型。TE是一个非常好的库,因为它可以让我们的代码修改量最小,而PyTorch原生FP8支持虽然需要修改代码,并且还是在试验阶段(最新的2.3还是在试验阶段),可能会产生问题,但是这会让训练速度更快。

不过总的来说FP8的确可以加快我们的训练速度,提高GPU的使用效率。这里要提一句TE是由NVIDIA开发的,并对其gpu进行了大量定制,所以如果是N卡的话可以直接用TE。

编辑:于腾凯

校对:林亦霖

780cd579dd89facbb634fdc1ee25a003.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值