极端天气下的目标检测与测距算法

6e0b8ccc6e19447a682bfc337b599fbd.png

来源:机器学习AI算法工程


本文约1800字,建议阅读8分钟本文教你如何训练出一种天气分类模型,实时识别当下天气情况。

本文主要工作:

科技的发展与进步促使自动驾驶车辆逐渐成为全球汽车产业发展的重要战略方向。但自动驾驶车辆面对如:大雨、大雾、大雪等极端环境时,智能汽车图像采集与处理系统将面临巨大挑战。

并且自动驾驶需要实时关注周围物体的威胁,实时进行目标检测以及精确测量周围目标的距离是提高汽车安全性的可行之策。

本文教你如何训练出一种天气分类模型,实时识别当下天气情况。

其次针对不同天气情况则采取不同的图像去噪方法来提高图像质量。

天气前处理完成后将采取改进的 Yolo 模型对前方行人、车辆等道路环境目标进行目标检测。

最后对目标检测定位到的物体采用改进目标点的测距方法进行距离测量,为自动驾驶主动安全行为提供支持。

总结:本文完成了去雾、去雨、去雪,目标检测与车辆距离测量。运用了yoloV3目标检测,单目测距,prescan仿真。

1. 天气分类

为了实时识别出当下的天气情况,利用卷积神经网络搭建了天气分类模型。针对搜集到的天气图像数量少且不具代表性的问题,通过改进 mosaic 和图像合成手段进行数据增强与扩充。为了提升模型精度,将数据集划分成 6 种大小不同的 批尺寸,改进激活函数并引入模型优化方案。最终将数据集输送到天气分类模型训练后得到了良好的权重系数。该模型可以对实时出现的晴天、雨天、雾天、雪天四种天气进行识别分类,分类精确度可达 93.46%。

mosic天空区域图像增强:

4e453cafe08aab4d5d7b7e3f81d3468a.png

数据增强主要代码部分:

f3e74cf2db3d270d33bd949e9b44e586.png

5e6bb2df5014cddf2aa0c664e11b0884.png

四种天气数据集:

当涉及到自动驾驶技术时,天气数据的作用更加显著。以下是天气数据在自动驾驶中的几个重要作用:

预测能见度和道路状况:天气数据可以提供当前和未来的能见度信息以及道路的湿滑程度、积雪情况等。这对于自动驾驶车辆的感知和决策非常重要,因为它们需要根据道路状况调整行驶速度和操控方式,以确保安全驾驶。

优化路径规划和行驶策略:天气数据可以为自动驾驶车辆提供实时的气象信息,例如风速、降水情况和温度变化等。基于这些数据,自动驾驶系统可以选择最佳的路径规划和行驶策略,以应对不同的天气条件,并提供更加安全和高效的驾驶体验。

调整车辆控制系统:天气数据还可以帮助自动驾驶车辆调整其控制系统,以适应不同的天气条件。例如,在下雨或结冰的天气中,车辆可能需要调整制动和驱动力分配,以确保更好的牵引力和稳定性。

提供实时警报和建议:通过实时监测天气数据,自动驾驶系统可以向驾驶员或乘客提供相关的警报和建议。例如,在遇到暴风雨或冰雪道路条件时,系统可以提醒驾驶员减速或寻找安全停靠地点。

3b4bbc6c5af14b1a6f7033fa5bf7fbf3.png

天气分类代码部分:

d2e924e1685c5b603e4ebd8e886f2540.png

2. 极端天气下图像前处理

(1)去雾

针对不同的天气则采取不同的图像前处理方法来提升图像质量。

雾天天气 时,针对当下求解的透射率会导致去雾结果出现光晕、伪影现象,本文采用加权最小二乘法细化透射率透。

针对四叉树法得到的大气光值不精确的问题,改进四叉树法来解决上述问题。将上述得到的透射率和大气光值代入大气散射模型完成去雾处理;下图为去雾前后对比图。

去雾前:

f1d547213024ecb0a52be11ef71e33aa.png

去雾后:

3eee3e092bb64f3291f49db4506cdfb2.png

去雾关键代码:

161180d1db070b90a3e2db1a8191b080.png

(2)去雨‍

  • 面对雨天环境则采取主成分分析方法获取雨线图中雨线噪声的大小和形状信息,并将其与自适应阈值进行比较。

  • 当满足条件时,利用一种方法将雨线与之邻近的无雨背景层进行关联来达到去雨目的。‍

去雨流程图:

a2cfac83606ecbd7b69f349d5a628073.png

去雨关键代码:

1041b1d3d06ff2e88d1cbd44929846eb.png

f97c96c942e27f4dad4e0d9fd247db4a.png

去雨结果:

d0b8af9643a27f3b0755021af9c1dffb.png

(3)去雪‍

  • 雪天天气时,本文在去雨算法的基础上引入一种图像处理手段,完成对图像中雪斑的进一步处理。

  • 通过与经典算法定性以及定量比较,所提算法在结果中具良好的有效性和优越性。

去雪前后对比图:

a416267ddc8f079bca282eb48b36f21a.png

去雪关键代码:

623b227289f1b7b5e5ba767e13066695.png

3. 目标检测

  • 在图像处理后加入目标检测,提高了目标检测精度以及目标数量。

下图展现了雾天处理后的结果
图第一列为雾霾图像,第二列为没有加入图像处理的目标检测结果图,第三列为去雾后的目标检测结果图。

前处理前后目标检测效果对比:

767a8263cb3b6c32df6c63aafd36c475.png

4. 测距研究

为了得到距离,进行了precan仿真验证。并完成10-100m的图像采集,利用测距模型进行测量。在prescan进行了如下操作。

Prescan单目测距仿真研究:

2cf517147da2b7d2fed4816a0550861d.jpeg

上图采集到的目标框将可以用于自己模型的计算验证。

精确的对目标进行测距可以提高汽车安全性能。为了测量出目标检测得到的物体距离,本文首先完成了世界坐标到图像坐标系的公式推导,标定了相机内外参数。针对当下侧向物体测距时测量精确度不高的问题,进行了改进。得到了以下结果:

c5df18b29b8d0a042b054c4aaa10b6ff.jpeg

编辑:黄继彦

关于我们

数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。

d0eb6edd8e56fba0471175fc642db9fb.png

新浪微博:@数据派THU

微信视频号:数据派THU

今日头条:数据派THU

<think>好的,用户想了解小车避障算法的实现,特别是关于自动驾驶、障碍检测、传感器和数据处理方面。首先,我需要整理避障算法的基本框架,通常分为环境感知、数据处理、路径规划和运动控制四个部分。 在环境感知方面,常用的传感器包括激光雷达、摄像头、超声波传感器和红外传感器。得分别解释每种传感器的作用,比如激光雷达用于精确测距,摄像头用于视觉识别,超声波适合短距离检测。这里可以引用参考中的内容,比如引用[1]提到的雷达、激光扫描仪和摄像头,以及引用[2]中的CNN用于目标检测。 然后是数据处理部分,需要涵盖数据融合方法,比如卡尔曼滤波和多传感器融合算法,还有障碍物分类,可能用到机器学习模型。这部分可以参考引用[2]中的障碍物定位和跟踪,以及引用[3]提到的视觉传感器信息处理。 路径规划算法,如A*和Dijkstra,以及局部规划方法如动态窗口法,需要简要说明其应用场景。运动控制部分则要提到PID控制和模型预测控制,确保小车能准确执行路径。 接着是代码示例,需要选一个简单的传感器数据处理,比如超声波的数据滤波和距离计算,或者使用OpenCV进行图像处理。根据引用[1]的示例,可能用类似的结构,但用户可能需要更具体的代码,比如Python示例。 最后生成相关问题,要覆盖算法优化、传感器选择、实时性处理、特定场景应用等,确保问题有针对性,帮助用户进一步探索。需要检查引用是否准确,比如引用[3]提到视觉避障方式,可以关联到摄像头数据处理部分。 注意所有公式用$...$,独立公式用$$...$$,比如路径规划中的代价函数。同时确保回答结构清晰,分步骤解释,符合用户要求的中文回答。还要避免使用Markdown,用自然的分段和标号。现在整理这些内容,确保各部分连贯,引用正确。</think>### 小车避障算法实现关键技术解析 #### 1. **环境感知传感器** 小车避障的核心是通过传感器获取环境信息。常用传感器包括: - **激光雷达(LiDAR)**:通过发射激光束测量障碍物距离,生成高精度点云数据,适用于精确建模[^1]。 - **摄像头**:基于视觉的障碍检测,利用卷积神经网络(CNN)识别行人、车辆等目标[^2]。例如,检测图像中的障碍物边界框: $$ \text{输出} = \text{CNN}(I), \quad I \in \mathbb{R}^{H \times W \times 3} $$ - **超声波传感器**:通过声波反射时间计算距离,成本低但精度有限,适合短距离避障[^3]。 - **红外传感器**:检测近距离障碍物,常用于防跌落场景。 #### 2. **数据处理融合** 多传感器数据需融合以提高可靠性: - **卡尔曼滤波**:消除噪声,优化距离估计。例如,超声波测距模型: $$ z_k = H x_k + v_k, \quad v_k \sim \mathcal{N}(0, R) $$ - **障碍物分类**:使用机器学习(如支持向量机、随机森林)区分障碍物类型(静态/动态)。 - **多传感器融合算法**:将激光雷达点云摄像头图像对齐,结合语义信息。 #### 3. **路径规划算法** 根据感知结果生成无碰撞路径: - **全局规划**:A*算法、Dijkstra算法,基于栅格地图搜索最短路径。 - **局部规划**:动态窗口法(DWA),实时避障: $$ \text{代价函数} = \alpha \cdot \text{路径平滑度} + \beta \cdot \text{障碍物距离} $$ #### 4. **运动控制** 控制小车执行规划路径: - **PID控制**:调节电机转速实现轨迹跟踪。 - **模型预测控制(MPC)**:优化未来多步的控制量。 --- ### 代码示例(超声波传感器数据处理) ```python class UltrasonicSensor: def __init__(self): self.history = [] def filter_distance(self, raw_data, window_size=5): # 滑动窗口滤波 self.history.append(raw_data) if len(self.history) > window_size: self.history.pop(0) return sum(self.history) / len(self.history) # 计算障碍物距离 sensor = UltrasonicSensor() raw_distance = 30.5 # 模拟传感器读数 smoothed = sensor.filter_distance(raw_distance) print(f"滤波后距离: {smoothed:.2f} cm") ``` --- ### 关键问题优化方向 1. **传感器选择**:激光雷达精度高但成本高,如何平衡性能成本? 2. **实时性**:深度学习模型在嵌入式设备(如树莓派)上的部署优化。 3. **动态障碍物**:如何预测移动障碍物的轨迹(如扩展卡尔曼滤波)? 4. **极端环境**:雨雾天气下激光雷达和摄像头的可靠性提升方法。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值