一文概览图卷积网络基本结构和最新进展(附视频&代码)

本文介绍了图卷积网络(GCN)的基本结构,包括其与谱图卷积的关系,以及GCN在半监督学习中的应用。通过一个一阶GCN模型展示图嵌入的过程,并探讨了GCN模型的优缺点,同时提供了相关资源链接,如论文和代码实现。
摘要由CSDN通过智能技术生成

来源:机器之心

本文长度为3476字,建议阅读7分钟

本文为你介绍图卷积网络的基本结构和最新的研究进展,并用一个简单的一阶 GCN 模型进行图嵌入。


本文介绍了图卷积网络的基本结构和最新的研究进展,并指出了当前模型的优缺点。通过对半监督学习应用 GCN 证明三层 GCN 模型不需要节点的任何特征描述就可以对只有一个标签实例的类进行线性分离。


  • GitHub 链接:https://github.com/tkipf/gcn

  • 论文链接:https://arxiv.org/abs/1609.02907


概览


在当今世界中许多重要的数据集都以图或网络的形式出现:社交网络、知识图表、蛋白质交互网络、万维网等。然而直到最近,人们才开始关注将神经网络模型泛化以处理这种结构化数据集的可能性。


在过去几年间,许多论文都重新注意起将神经网络泛化以处理任意结构图的问题,例如:


  • 2014 年 Bruna 等人发表在 ICLR 的文章:

    http://arxiv.org/abs/1312.6203;

  • 2015 年 Henaf f 等人发表的文章:

    http://arxiv.org/abs/1506.05163;

  • 2015 年 Duvenaud 等人发表在 NIPS 的文章:http://papers.nips.cc/paper/5954-convolutional-networks-on-graphs-for-learning-molecular-fingerprints;

  • Li 等人在 2016 年发表在 ICLR 的文章:

    https://arxiv.org/abs/1511.05493;

  • Defferrard 等人 2016 年发表在 NIPS 的文章:https://arxiv.org/abs/1606.09375;

  • 以及 Kipf&Welling 在 2017 年发表在 ICLR 的文章:http://arxiv.org/abs/1609.02907。


目前其中有一些在专业领域中都得到了非常好的结果,在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值