基于3D结构的球形消息传递机制的GNN Spherical Message Passing for 3D Graph Networks

地址: https://arxiv.org/abs/2102.05013v1

内容:3D结构信息对分子处理十分重要,但是以往的GNN没有考虑到

    • 先固定一个点
    • 然后𝑑,𝜃,𝜑分别表示距离、夹角、扭角
  • 因为直接使用这种三维结构缺乏有意义的物理表示,因此使用基于物理的表示进行处理

1 一般的基于3D的空间传递模型

  • 对应公式
    • 示意图,左边为更新边的(公式(1)第一个),右边为更新节点的(公式(1)第二个)

2 三维坐标的表示方法

  • 三个重要的量:𝑑,𝜃,𝜑

3 提出的模型

  • 作者对图1进行了简化,结果如下

  • 可以看出,空间信息的聚合只在更新边的时候使用了

空间信息的处理

  • 这段看的完全一脸懵逼,看不懂,直接把最后三个公式当结论看了
  • 由于直接使用(𝑑,𝜃,𝜑)没有物理上的意义,因此考虑近似密度泛函理论(DFT)的薛定谔方程的解
  • 薛定谔方程可以用与时间无关的方式写成
  • 通过分离变量并将笛卡尔坐标系转换为SCS(Griffiths&Schroeter,2018),SCS中薛定谔方程的一般正则解是
  • 执行一些trick的简化版本
  • 去掉扭角的简化版本
  • 只有距离的简化版本

模型概览

4 实验结果

  • 12项任务,8个最优,2个次优(表1),另外还有两个数据集也做了(表2~3)

  • 消融实验

5 感想

  • 总体来说还是很清晰的,除了那几个物理公式
  • 最后的三维表表示,其实这就相当于用物理的方法,把先验知识引入到了模型之中。有效是肯定有效的,但是不见得就是最好的表示。个人觉得完全可以探讨一种预训练的方法,输入就是(𝑑,𝜃,𝜑),甚至是笛卡尔坐标,让模型自适应地进行调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值