3.24 编写一个加密解密程序实现习题 3.1 里的仿射密码。
1. 信息:
这段代码实现了仿射密码(Affine Cipher)的加密和解密。仿射密码是一种使用数学函数进行加密和解密的方法,它依赖于两个关键的参数:a
(乘数)和b
(加数)。这里的代码包括了辅助函数来计算最大公约数(GCD)和模逆,以及主要的加密和解密函数。
2. 分析:
- gcd函数:使用欧几里得算法计算两个数的最大公约数,确保
a
和字母表大小(这里是26,代表英文字母数量)互质。 - modInverse函数:使用扩展的欧几里得算法找到模逆,这对于解密过程中计算逆元是必要的。
- affineEncrypt函数:实现仿射密码的加密过程。检查
a
和26是否互质,然后对文本中的每个字母应用加密公式。 - affineDecrypt函数:实现解密过程,利用模逆来逆转加密过程。
- main函数:接收用户输入的文本和密钥(
a
和b
),展示加密和解密的结果。
3. 算法设计:
- 采用仿射密码算法,加密公式为
E(x) = (ax + b) mod 26
,解密公式为D(x) = a_inv * (x - b) mod 26
,其中a_inv
是a
模26的乘法逆元。 - 确保
a
和26互质以使加密函数可逆。 - 使用模逆而不是试错法来找到乘法逆元,提高效率。
4. 代码实现(C++):
#include <iostream>
#include <string>
// 辅助函数:计算a和m的最大公约数(GCD)
int gcd(int a, int m) {
while (m != 0) {
int t = m;
m = a % m;
a = t;
}
return a;
}
// 辅助函数:使用扩展欧几里得算法找到a模m的逆
int modInverse(int a, int m) {
for (int x = 1; x < m; x++) {
if ((a * x) % m == 1)
return x;
}
return 1; // 如果不存在逆元,返回1(理论上不应该发生,因为a和m应该是互质的)
}
// 加密函数
std::string affineEncrypt(std::string text, int a, int b) {
std::string result = "";
// 检查a和26是否互质
if (gcd(a, 26) != 1) {
std::cerr << "错误: a和字母表大小不互质,加密不可能进行。" << std::endl;
return result;
}
for (char& c : text) {
if (isalpha(c)) {
char base = isupper(c) ? 'A' : 'a';
result += char((a * (c - base) + b) % 26 + base);
}
else {
result += c;
}
}
return result;
}
// 解密函数
std::string affineDecrypt(std::string text, int a, int b) {
std::string result = "";
int a_inv = modInverse(a, 26);
for (char& c : text) {
if (isalpha(c)) {
char base = isupper(c) ? 'A' : 'a';
result += char(a_inv * ((c - base) - b + 26) % 26 + base);
}
else {
result += c;
}
}
return result;
}
// 主函数
int main() {
std::string text;
int a, b;
std::cout << "请输入文本: ";
getline(std::cin, text);
std::cout << "请输入a的值(必须和字母表大小互质): ";
std::cin >> a;
std::cout << "请输入b的值: ";
std::cin >> b;
std::string encrypted = affineEncrypt(text, a, b);
std::string decrypted = affineDecrypt(encrypted, a, b);
std::cout << "加密文本: " << encrypted << std::endl;
std::cout << "解密文本: " << decrypted << std::endl;
return 0;
}
运行效果:
5. 实现代码过程中可能遇到的问题:
- 如果
a
和26不互质,加密过程将无法进行,因为这意味着加密函数不可逆。 - 在
modInverse
函数中,如果不存在模逆(理论上不应该发生如果a
和26互质),函数返回1。这可能导致解密不正确。 - 对于非字母字符,代码直接将其添加到结果中,不进行加密或解密。这可能不是某些情况下想要的行为。
- 用户输入的错误处理(如非数字输入作为
a
或b
)可能导致程序异常结束。
6.总结
-
仿射密码理论:
- 了解到仿射密码是一种基于数学的简单替换加密技术,涉及到模算术和逆元的概念。
- 认识到在实际应用中,选择正确的密钥(在本例中为
a
和b
)是确保加密有效和可解的关键。
-
模算术应用:
- 学习如何在编程中应用模算术,特别是在加密和解密的上下文中。
- 了解如何计算最大公约数(GCD)来检查两个数是否互质,这对于确定加密函数是否可逆非常重要。
-
扩展欧几里得算法:
- 掌握如何实现扩展欧几里得算法来计算乘法逆元,这在许多加密算法中都是一个重要组成部分。
-
C++编程实践:
- 通过具体实例学习C++的基本语法和结构,包括函数定义、循环、条件判断、I/O操作等。
- 理解如何组织代码,使其模块化和易于阅读,通过定义清晰的函数来处理特定任务。
-
错误处理和边界条件:
- 识别和处理潜在的错误情况,例如非互质的密钥输入,以及理解在实际应用中进行健壮性检查的重要性。
- 学习如何为特定情况(如非字母字符)设定边界条件。
-
安全意识:
- 虽然仿射密码在现代标准下不安全,但通过学习它,我们可以理解更复杂和安全的加密方法的基本原理。
- 认识到在设计安全系统时考虑密钥空间大小、潜在的攻击方法(如暴力破解)的重要性。