9.4 多元复合函数的求导法则

 

第四节 多元复合函数的求导法则

引言

在本节中,我们将一元函数微分学中的复合函数的求导法则推广到多元复合函数的情形。多元复合函数的求导法则在多元函数微分学中也起着重要作用。我们将按照多元复合函数的不同复合情形,分三种情况进行讨论。

1. 一元函数与多元函数复合的情形

定理1

如果函数 𝑢=𝜑(𝑡)u=φ(t) 及 𝑣=𝜓(𝑡)v=ψ(t) 都在点 𝑡t 可导,函数 𝑧=𝑓(𝑢,𝑣)z=f(u,v) 在对应点 (𝑢,𝑣)(u,v) 具有连续偏导数,那么复合函数 𝑧=𝑓[𝜑(𝑡),𝜓(𝑡)]z=f[φ(t),ψ(t)] 在点 𝑡t 可导,且有:

证明

用同样的方法,可把定理推广到复合函数的中间变量多于两个的情形。例如,设 𝑧=𝑓[𝜑(𝑡),𝜓(𝑡),𝜔(𝑡)]z=f[φ(t),ψ(t),ω(t)] 则在与定理相类似的条件下,这复合函数在点 𝑡t 可导,且其导数可用下列公式计算:

在公式 (4-1) 及 (4-2) 中的导数称为全导数。

2. 多元函数与多元函数复合的情形

定理2

如果函数 𝑢=𝜑(𝑥,𝑦)u=φ(x,y) 及 𝑣=𝜓(𝑥,𝑦)v=ψ(x,y) 都在点 (𝑥,𝑦)(x,y) 具有对 𝑥x 及 𝑦y 的偏导数,函数 𝑧=𝑓(𝑢,𝑣)z=f(u,v) 在对应点 (𝑢,𝑣)(u,v) 具有连续偏导数,那么复合函数 𝑧=𝑓[𝜑(𝑥,𝑦),𝜓(𝑥,𝑦)]z=f[φ(x,y),ψ(x,y)] 在点 (𝑥,𝑦)(x,y) 的两个偏导数都存在,且有:

类似地,设 𝑢=𝜑(𝑥,𝑦)u=φ(x,y)、𝑣=𝜓(𝑥,𝑦)v=ψ(x,y) 及 𝑤=𝜔(𝑥,𝑦)w=ω(x,y) 都在点 (𝑥,𝑦)(x,y) 具有对 𝑥x 及 𝑦y 的偏导数,函数 𝑧=𝑓(𝑢,𝑣,𝑤)z=f(u,v,w) 在对应点 (𝑢,𝑣,𝑤)(u,v,w) 具有连续偏导数,则复合函数: 𝑧=𝑓[𝜑(𝑥,𝑦),𝜓(𝑥,𝑦),𝜔(𝑥,𝑦)]z=f[φ(x,y),ψ(x,y),ω(x,y)] 在点 (𝑥,𝑦)(x,y) 的两个偏导数都存在,且可用下列公式计算:

3. 其他情形

定理3

如果函数 𝑢=𝜑(𝑥,𝑦)u=φ(x,y) 在点 (𝑥,𝑦)(x,y) 具有对 𝑥x 及 𝑦y 的偏导数,函数 𝑣=𝜓(𝑦)v=ψ(y) 在点 𝑦y 可导,函数 𝑧=𝑓(𝑢,𝑣)z=f(u,v) 在对应点 (𝑢,𝑣)(u,v) 具有连续偏导数,那么复合函数

上述情形实际上是情形2的一种特例,即在情形2中,如变量 𝑣v 与 𝑥x 无关,从而 ∂𝑣∂𝑥=0∂x∂v​=0。在 𝑣v 对 𝑦y 求导时,由于 𝑣=𝜓(𝑦)v=ψ(y) 是一元函数,故换成普通导数 𝑑𝑣𝑑𝑦dydv​,这就得上述结果。

在情形3中,还会遇到这样的情形:复合函数的某些中间变量本身又是复合函数的自变量。例如,设 𝑧=𝑓(𝑢,𝑥,𝑦)z=f(u,x,y) 具有连续偏导数,而 𝑢=𝜑(𝑥,𝑦)u=φ(x,y) 具有偏导数,则复合函数 𝑧=𝑓[𝜑(𝑥,𝑦),𝑥,𝑦]z=f[φ(x,y),x,y] 可看做情形2中当 𝑣=𝑥v=x, 𝑤=𝑦w=y 的特殊情形。因此: 从而复合函数 𝑧=𝑓[𝜑(𝑥,𝑦),𝑥,𝑦]z=f[φ(x,y),x,y] 具有对自变量 𝑥x 及 𝑦y 的偏导数,且由公式 (4-5) 及 (4-6) 得:

实例

例1

解:

例2

解:

例3

解:

总结

通过这些定理和例子,我们可以看到,复合函数的求导法则在多元函数微分学中是非常重要且实用的。无论是通过全导数还是偏导数,这些法则都帮助我们更好地理解和处理复杂的多元函数。

 

 

 

 

 

 

 

 

 

 

<think>好的,我现在需要解决用户关于IAR 9.4版本中printf函数无法打印的问题。首先,我得回忆一下常见的printf不工作的原因,比如重定向问题、库配置、优化设置、硬件连接等。然后针对IAR特定版本的可能变化进行考虑。 用户提到是IAR 9.4,可能这个版本有新的配置要求或者默认设置改变了。首先应该检查标准库的重定向是否正确。在IAR中,通常需要重定向低级IO函数,比如__write函数,用户是否实现了这个?如果没实现,printf可能不会输出。 接下来,看看项目配置里的库选项。IAR可能有几种库类型,比如全库、简化库等,是否选择了支持semihosting的配置?或者用户不小心禁用了semihosting导致输出无法显示。此外,检查是否链接了正确的库文件,比如使用semihosting时需要特定的库支持。 优化设置也是一个可能的问题。如果编译器优化过高,可能会导致某些代码被优化掉,比如未使用的变量或printf语句本身。建议用户尝试降低优化级别,看看是否有改善。 硬件方面,需要确认调试器的连接是否正常,比如JTAG或SWD接口是否稳定。同时,检查串口配置是否正确,比如波特率、数据位、停止位等,是否与终端软件设置匹配。如果使用硬件输出,比如UART,需要确保相关的GPIO和UART外设已经正确初始化和配置。 还有可能是堆栈空间不足,导致printf函数运行时崩溃。检查链接器配置文件中的堆栈大小设置,适当增加堆栈和堆的大小试试看。 另外,IAR 9.4是否有已知的关于printf的bug?可能需要查看IAR的更新日志或社区讨论,确认是否存在相关问题,或者是否需要进行版本升级或打补丁。 还可以建议用户进行简单的测试,比如使用puts函数输出字符串,看是否有效,这样可以缩小问题范围。如果puts有效,可能问题出在格式字符串处理上;如果无效,可能是整个输出系统的问题。 最后,建议用户提供更多的上下文信息,比如代码片段、工程配置、使用的硬件平台等,以便更准确地诊断问题所在。</think>在IAR 9.4版本中遇到`printf`函数无法打印输出的情况,可能是由以下几个关键原因及解决方案导致的: --- ### 一、标准输出未正确重定向 #### 现象 - 输出未显示在调试终端或串口中 #### 解决方法 1. **实现低级IO重定向** 在代码中添加`__write`系统调用重定向: ```c size_t __write(int handle, const unsigned char *buf, size_t size) { // 选择输出通道(如UART) for (size_t i = 0; i < size; i++) { UART_Send(buf[i]); // 替换为实际硬件发送函数 } return size; } ``` 2. **检查链接器配置** 在工程选项 > General Options > Library Configuration 中: - 选择 **Semihosted** 模式(若使用调试器输出) - 或选择 **None** 模式并手动实现硬件输出 --- ### 二、库配置与优化问题 #### 现象 - 代码被编译器优化删除 - 链接了不兼容的库版本 #### 解决方法 1. **关闭优化测试** 在工程选项 > C/C++ Compiler > Optimizations 中: - 将优化级别设为 **Low** 或 **None** 2. **强制保留`printf`调用** 对变量添加`volatile`修饰: ```c volatile int debugVar = 42; printf("Value: %d", debugVar); // 防止被优化 ``` --- ### 三、硬件初始化问题 #### 现象 - 串口无输出/输出乱码 #### 解决方法 1. **验证外设配置** ```c void UART_Init(void) { // 确认波特率、时钟源、GPIO复用等配置 // 示例:STM32CubeMX生成的UART初始化代码 } ``` 2. **交叉测试硬件** 用简单回环测试验证UART功能: ```c UART_Send(&#39;A&#39;); if (UART_Receive() == &#39;A&#39;) { printf("UART OK\n"); // 验证硬件正常 } ``` --- ### 四、堆栈空间不足 #### 现象 - 程序在调用`printf`时崩溃 #### 解决方法 1. **调整链接器配置** 在`.icf`文件中增加堆栈大小: ```javascript define symbol __ICFEDIT_size_cstack__ = 0x2000; define symbol __ICFEDIT_size_heap__ = 0x1000; ``` --- ### 五、版本兼容性验证 #### 建议操作 1. 检查IAR官方发布说明,确认9.4版本是否存在已知`printf`相关bug 2. 尝试用最小工程复现问题: ```c #include <stdio.h> int main(void) { printf("Hello IAR\n"); while(1); } ``` --- ### 排查流程图 ```plaintext 1. 检查Semihosting配置 → 2. 验证__write重定向 → 3. 测试UART基础通信 → 4. 调整优化级别 → 5. 扩大堆栈空间 ``` 若问题仍未解决,建议提供以下信息: - 工程配置截图(尤其Library Options) - 硬件平台型号 - 完整的`printf`相关代码片段 - 编译器警告/错误信息
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值