复合函数求导法则

u u u v v v 都是关于自变量 x x x 的函数。

加减形式:
( u ± v ) ′ = u ′ ± v ′ \bm{ \left( u \pm v \right)' = u' \pm v' } (u±v)=u±v

相乘形式:
( u v ) ′ = u ′ v + u v ′ \bm{ \left( u v \right)' = u' v + uv' } (uv)=uv+uv

相除形式:
( u v ) ′ = u ′ v − u v ′ v 2 \bm{ \left( \frac{u}{v} \right)' = \frac{u'v - uv'}{v^2} } (vu)=v2uvuv

假设 $f(x)$ 和 $g(x)$ 都是可导的函数,$y=f(u)$,其中 $u=g(x)$,则 $y$ 是 $x$ 的复合函数。我们要求解 $y$ 对 $x$ 的导数 $\frac{dy}{dx}$。 根据链式法则,$\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}$。 现在我们来分别求解 $\frac{dy}{du}$ 和 $\frac{du}{dx}$。 1. 求解 $\frac{dy}{du}$ 根据导数的定义,$\frac{dy}{du}=\lim_{\Delta u\to0}\frac{\Delta y}{\Delta u}$。 当 $\Delta u\to0$ 时,$\Delta y=f(u+\Delta u)-f(u)$。 将 $u+\Delta u$ 代入 $y=f(u)$,得到 $y=f(u+\Delta u)$。 因此,$\Delta y=f(u+\Delta u)-f(u)=y(u+\Delta u)-y(u)$。 将 $\Delta y$ 代入导数的定义中,得到: $$ \frac{dy}{du}=\lim_{\Delta u\to0}\frac{y(u+\Delta u)-y(u)}{\Delta u} $$ 2. 求解 $\frac{du}{dx}$ 同理,$\frac{du}{dx}=\lim_{\Delta x\to0}\frac{\Delta u}{\Delta x}$。 当 $\Delta x\to0$ 时,$\Delta u=g(x+\Delta x)-g(x)$。 将 $\Delta u$ 代入 $u=g(x)$,得到 $u=g(x+\Delta x)$。 因此,$\Delta u=g(x+\Delta x)-g(x)=u(x+\Delta x)-u(x)$。 将 $\Delta u$ 代入导数的定义中,得到: $$ \frac{du}{dx}=\lim_{\Delta x\to0}\frac{u(x+\Delta x)-u(x)}{\Delta x} $$ 3. 求解 $\frac{dy}{dx}$ 将 $\frac{dy}{du}$ 和 $\frac{du}{dx}$ 代入 $\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}$,得到: $$ \frac{dy}{dx}=\lim_{\Delta x\to0}\frac{y(u+\Delta u)-y(u)}{\Delta u}\cdot\lim_{\Delta x\to0}\frac{u(x+\Delta x)-u(x)}{\Delta x} $$ 因为 $u=g(x)$,所以: $$ \lim_{\Delta x\to0}\frac{u(x+\Delta x)-u(x)}{\Delta x}=\lim_{\Delta x\to0}\frac{g(x+\Delta x)-g(x)}{\Delta x}=\frac{du}{dx} $$ 因此,上式可以简化为: $$ \frac{dy}{dx}=\lim_{\Delta u\to0}\frac{y(u+\Delta u)-y(u)}{\Delta u}\cdot\frac{du}{dx}=\frac{dy}{du}\cdot\frac{du}{dx} $$ 这就是复合函数求导法则的推导过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值