12.4 函数展开成幂级数

 

12.4 函数展开成幂级数

第十二章 无穷级数

第四节 函数展开成幂级数

在前面,我们讨论了幂级数的收敛域及其和函数的性质。但在许多应用中,我们遇到的却是相反的问题:给定函数 f(x)f(x)f(x),要考虑它是否能在某个区间内“展开成幂级数”,也就是说,是否能找到这样一个幂级数,它在某区间内收敛,且其和恰好就是给定的函数 f(x)f(x)f(x)。如果能找到这样的幂级数,我们就说函数 f(x)f(x)f(x) 在该区间内能展开成幂级数,而这个幂级数在该区间内就表达了函数 f(x)f(x)f(x)。

假设函数 f(x)f(x)f(x) 在点 x0x_0x0​ 的某邻域 U(x0)U(x_0)U(x0​) 内能展开成幂级数,即有

则根据和函数的性质,可知 f(x)f(x)f(x) 在 U(x0)U(x_0)U(x0​) 内应具有任意阶导数,且

由此可得

这就表明,如果函数 f(x)f(x)f(x) 有幂级数展开式(公式 4-1),那么该幂级数的系数 ana_nan​ 由公式(4-2)确定,即该幂级数必为

而展开式必为

幂级数(4-3)叫做函数 f(x)f(x)f(x) 在点 x0x_0x0​ 处的泰勒级数。展开式(4-4)叫做函数 f(x)f(x)f(x) 在点 x0x_0x0​ 处的泰勒展开式。

由以上讨论可知,函数 f(x)f(x)f(x) 在 U(x0)U(x_0)U(x0​) 内能展开成幂级数的充分必要条件是泰勒展开式(4-4)成立,也就是泰勒级数(4-3)在 U(x0)U(x_0)U(x0​) 内收敛,且收敛到 f(x)f(x)f(x)。下面讨论泰勒展开式(4-4)成立的条件。

定理:设函数 f(x)f(x)f(x) 在点 x0x_0x0​ 的某一邻域 U(x0)U(x_0)U(x0​) 内具有各阶导数,则 f(x)f(x)f(x) 在该邻域内能展开成泰勒级数的充分必要条件是在该邻域内 f(x)f(x)f(x) 的泰勒公式中的余项 Rn(x)R_n(x)Rn​(x) 当 n→∞n \to \inftyn→∞ 时的极限为零,即

证: f(x)f(x)f(x) 的 nnn 阶泰勒公式为(见第三章第三节) 其中 叫做函数 f(x)f(x)f(x) 的 nnn 次泰勒多项式,而 就是定理中所指的余项。

由于 nnn 次泰勒多项式 Pn(x)P_n(x)Pn​(x) 就是级数(4-3)的前 n+1n+1n+1 项部分和,根据级数收敛的定义,即有

下面着重讨论 x0=0x_0 = 0x0​=0 的情形。在(4-3)式中,取 x0=0x_0 = 0x0​=0,得

级数(4-5)称为函数 f(x)f(x)f(x) 的麦克劳林级数。若 f(x)f(x)f(x) 能在 (−r,r)(-r, r)(−r,r) 内展开成 xxx 的幂级数,则有

(4-6)式称为函数 f(x)f(x)f(x) 的麦克劳林展开式。

要把函数 f(x)f(x)f(x) 展开成 xxx 的幂级数,可以按照下列步骤进行:

第一步 求出 f(x)f(x)f(x) 的各阶导数 f′(x),f′′(x),…,f(n)(x),…f'(x), f''(x), \ldots, f^{(n)}(x), \ldotsf′(x),f′′(x),…,f(n)(x),…,如果在 x=0x = 0x=0 处某阶导数不存在,就停止进行,例如在 x=0x = 0x=0 处, f(x)=ex2f(x) = e^{x^2}f(x)=ex2 的三阶导数不存在,它就不能展开为 xxx 的幂级数。

第二步 求出函数及其各阶导数在 x=0x = 0x=0 处的值:

第三步 写出幂级数

第四步 利用余项 Rn(x)R_n(x)Rn​(x) 的表达式 考察当 xxx 在区间 (−R,R)(-R, R)(−R,R) 内时余项 Rn(x)R_n(x)Rn​(x) 的极限是否为零。如果为零,那么函数 f(x)f(x)f(x) 在区间 (−R,R)(-R, R)(−R,R) 内的幂级数展开式为

 

例题解析

例1:将函数 f(x)=exf(x) = e^xf(x)=ex 展开成 xxx 的幂级数

解答:

所给函数的各阶导数为 f(n)(x)=exf^{(n)}(x) = e^xf(n)(x)=ex(n=1,2,…n = 1, 2, \ldotsn=1,2,…),因此 f(n)(0)=1f^{(n)}(0) = 1f(n)(0)=1(n=0,1,2,…n = 0, 1, 2, \ldotsn=0,1,2,…),这里 f(0)=e0=1f(0) = e^0 = 1f(0)=e0=1。于是得级数:

它的收敛半径 R=+∞R = +\inftyR=+∞。对于任何有限的数 xxx 与 ξ\xiξ(ξ\xiξ 在 0 与 xxx 之间),余项的绝对值为:

由于 e∣ξ∣e^{|\xi|}e∣ξ∣ 有限,而这是收敛级数的一般项,所以当 n→∞n \to \inftyn→∞ 时, 即当 n→∞n \to \inftyn→∞ 时,有 ∣Rn(x)∣→0|R_n(x)| \to 0∣Rn​(x)∣→0。于是得展开式:

通过这个例题,我们学习到幂级数展开的一般方法,并理解了如何通过计算余项 Rn(x)R_n(x)Rn​(x) 的极限来判断级数的收敛性。

例2:将函数 f(x)=sin⁡xf(x) = \sin xf(x)=sinx 展开成 xxx 的幂级数

解答:

所给函数的各阶导数为: f(n)(x)=sin⁡(x+n⋅2π)(n=1,2,…),f^{(n)}(x) = \sin(x + n \cdot 2\pi) \quad (n = 1, 2, \ldots),f(n)(x)=sin(x+n⋅2π)(n=1,2,…), f(n)(0)f^{(n)}(0)f(n)(0) 顺序循环地取 0,1,0,−1,…0, 1, 0, -1, \ldots0,1,0,−1,…(n=0,1,2,3,…n = 0, 1, 2, 3, \ldotsn=0,1,2,3,…),于是得级数:

它的收敛半径 R=+∞R = +\inftyR=+∞。对于任何有限的数 xxx 与 ξ\xiξ(ξ\xiξ 在 0 与 xxx 之间),余项的绝对值当 n→∞n \to \inftyn→∞ 时的极限为零:

因此得展开式:

通过这个例题,我们了解到如何利用函数的导数进行幂级数展开,并且认识到余项的极限是检验级数收敛性的关键。

例3:将函数 f(x)=(1−x)ln⁡(1+x)f(x) = (1 - x) \ln(1 + x)f(x)=(1−x)ln(1+x) 展开成 xxx 的幂级数

解答:

把第二项中的 xn+1x^{n+1}xn+1 换成 xnx^nxn:

得到:

通过这个例题,我们学习到如何通过对已知的幂级数进行运算(如四则运算、变量代换等),来求解新的幂级数。

例4:将函数 sin⁡(x)\sin(x)sin(x) 展开成 (x−4)(x - 4)(x−4) 的幂级数

解答:

因为

已知 cos⁡(x−4)\cos(x - 4)cos(x−4) 和 sin⁡(x−4)\sin(x - 4)sin(x−4) 的幂级数展开式分别为:

所以

通过这个例题,我们学习到如何利用已知函数的幂级数展开式,通过变量代换来求解新的幂级数。

例5:将函数 f(x)=x2+4x+3f(x) = x^2 + 4x + 3f(x)=x2+4x+3 展开成 (x−1)(x - 1)(x−1) 的幂级数

解答:

因为

通过这个例题,我们学习到如何通过变量代换和展开式的线性组合,求解函数在新的中心点的幂级数展开。

例6:将函数 f(x)=(1+x)mf(x) = (1 + x)^mf(x)=(1+x)m 展开成 xxx 的幂级数,其中 mmm 为任意实数

解答:

函数 f(x)f(x)f(x) 的各阶导数为:

于是得到:

所以幂级数为:

相邻两项的系数之比为:

因此,对于任何实数 mmm,该级数在开区间 (−1,1)(-1, 1)(−1,1) 内收敛。我们设这个级数在开区间 (−1,1)(-1, 1)(−1,1) 内收敛到函数

下面证明 F(x)=(1+x)mF(x) = (1 + x)^mF(x)=(1+x)m: 逐项求导,得:

两边乘以 (1+x)(1 + x)(1+x):

所以 (1+x)F′(x)=mF(x)(1 + x)F'(x) = mF(x)(1+x)F′(x)=mF(x)。因此 两边积分,得到

设 x=0x = 0x=0 时,F(0)=1F(0) = 1F(0)=1,则 C=0C = 0C=0,所以 l

因此在区间 (−1,1)(-1, 1)(−1,1) 内有展开式:

在区间的端点,展开式是否成立取决于 mmm 的数值。公式(4-12)叫做二项展开式。特殊地,当 mmm 为正整数时,级数为 xxx 的 mmm 次多项式,这就是代数学中的二项式定理。

学习收获:

通过这些例题,我们不仅掌握了如何将函数展开成幂级数的方法,还学到了以下几点:

  • 理解了泰勒级数和麦克劳林级数的概念及其应用。
  • 学会了通过计算函数导数来确定幂级数的每一项系数。
  • 掌握了如何利用余项的极限来判断级数的收敛性,从而确保幂级数展开的正确性。

这些数学思想和技巧不仅在数学学习中至关重要,在解决实际问题时也有很大的应用价值。希望通过对这些例题的详细分析和讲解,能帮助大家更好地理解和掌握函数展开成幂级数的方法。

 

 

 

 

 

 

 

 

 

 

 

 

  • 34
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Xcode 12.4是一款由Apple开发的集成开发环境(IDE),用于在Mac OS X操作系统上进行软件开发。它包含了iOS 14.4、iPadOS 14.4、tvOS 14.4、watchOS 7.2以及macOS Big Sur 11.1的SDK。Xcode 12.4支持iOS 9及以上版本、tvOS 9及以上版本、watchOS 2及以上版本,并需要在安装有macOS 10.15.4及以上版本的电脑上使用。 如果您的电脑是运行在Catalina 10.15.7上的,而App Store显示由于版本过低无法安装Xcode,您可以尝试从第三方网站下载Xcode 12.4的应用程序。一个相对安全的下载地址是https://cloud.mfpud.com/Application/Xcode/,您可以下载Xcode_12.4.xip文件并解压缩后安装。然后,您还需要下载Xcode 12.4的真机配置包,将其拖到已解压的Xcode 12.4应用程序中的指定位置。 请注意,从非官方和未经验证的第三方网站下载Xcode应用程序可能存在安全风险,因此建议您谨慎操作。 希望这些信息对您有所帮助。如果您还有其他问题,请随时提问。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [2021-07-09](https://blog.csdn.net/bjnbt/article/details/118610239)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [Xcode12.4发布说明(翻译)](https://blog.csdn.net/guoyongming925/article/details/113865330)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值