工业质检之无监督图片异常检测

文章介绍了深度学习在工业质检中的应用,如CNN和自编码器等,但指出其依赖大量样本、高昂的训练和推理成本以及泛化能力不足的问题。接着提出了一种无监督异常检测方法,基于傅立叶变换和图像处理技术,无需训练样本,适用于不同情况的异常检测,尤其在周期性明显的图片上效果显著。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

工业质检和图片异常定位方法概述

随着深度学习的发展,对图片进行异常检测的方法也变得越来越多越来越强,比如卷积神经网络CNN,标注好异常的图片,收集好样本,经过有监督的训练可以获得很好的效果,在数据的加持下,深度学习有一统天下的趋势;还有就是降噪自编码器,可以直接给他正常样本,训练一个自编码器恢复原图片,对比图片发生变化的位置就可以定位缺陷的位置,GAN模型也同理,通过重建正样本,找到缺陷位置。

深度学习的缺点

1.比如使用深度学习的目标检测算法进行有监督的训练,可以获得不错的结果,但是这个结果是建立在拥有足够样本的前提下,当数据样本不够,或者存在较大的长尾分布的时候,效果常常就不理想。但是在工业质检或者叫做异常检测的情况下面,正样本恰恰存在收集困难,缺陷位置和类型非常的复杂和多样,这样也就给深度学习带来比较大的挑战。正如我前面参与面板厂商某东方的屏幕质检的项目中,深度学习定位的效果非常不理想,就是由于在屏幕上面存在非常多样样的缺陷,并且屏幕还经常出现这次出品A屏幕,后面又出现B屏幕,导致收集的样本无法适应后续的情况。而且深度学习的目标检测部署成本也是一个不小的成本。特别是工厂规模的加持下,成本也是下不来。
2.自编码器和GAN这些生成模型,可以部分克服样本不够的情况,因为在异常检测的情况下面,最不缺的就是正常的图片,但是在面对场景变换的情况下面,利用A产品训练的模型,无法适应B产品的情况,也就是因为产品之间的图片分布不一致,导致模型需要更新频繁

小结:结合起来就是深度学习

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值