【摘 要】WSN定位中的每个节点提供的数据会对其他节点的位置估计产生重要影响,然而在坐标真值未知的情况下难以对其进行有效度量。为此,基于无监督机器学习方法,在真实值未知的前提下设置评估基准,对节点的数据质量评估问题进行合理建模;同时,结合节点的历史行为,设计基于阈值判断的异常检测方案,剔除不合格的定位数据。仿真证明,所提方案能够有效评估节点的定位数据质量,结合异常节点检测方案,能够极大程度地提高网络的定位精度。
【关键词】无线传感器网络定位;无监督学习;数据质量评估;异常检测
0 引言
随着人类步入信息化时代,电磁波已经充斥人类生存的空间,这些电磁波可以被充分利用进行通信、测距以及导航等服务[1]。利用WSN(Wireless Sensor Network,无线传感器网络)对物体进行定位是其中一个重要的应用[2]。WSN是指大量具有信息感知功能的传感器节点通过无线通信的方式构成一个多跳自组织网络系统[3]。WSN定位就是利用传感器节点之间发送与接收的无线信号确定物体的位置。基于WSN的定位为近年来IoT(Internet of Things,物联网)技术的兴起提供了重要支撑[4-6]。
目前主流的WSN定位可以分为基于测距的和基于非测距的定位[7-8]。基于测距