函数作图的技巧(高数)

前言

从初中开始,我们就开始用笔在平面直角坐标系上作函数图象。随着对函数研究的不断深入,对作出的函数图象的精准度的要求也越来越高。以往我们只需要描一下点,在将点连起来即可。但用这种方法的话偏差可能会很大,所以我们不妨用一些技巧,使得我们作的函数图象与真实的函数图象尽量接近。


函数作图的技巧

在函数作图之前,我们要考察对函数的图象具有重要意义或影响的因素。函数作图的一般步骤如下:

  • 确定函数的定义域
  • 判定函数是否有奇偶性、周期性或其他对称性
  • 确定函数的增减区间和极值点
  • 确定函数的凹凸区间和拐点
  • 确定函数的渐近线
  • 求出函数在一些点的特殊值
  • 根据上述信息绘出函数图象

例题

作函数 f ( x ) = ( x + 1 ) 2 x f(x)=\dfrac{(x+1)^2}{x} f(x)=x(x+1)2的图象

解:
f \qquad f f的定义域是 ( − ∞ , 0 ) ⋃ ( 0 , + ∞ ) , f ( − 1 ) = 0 (-\infty,0)\bigcup(0,+\infty),f(-1)=0 (,0)(0,+),f(1)=0

f ′ ( x ) = ( x + 1 ) ( x − 1 ) x 2 , f ′ ′ ( x ) = 2 x 3 f'(x)=\dfrac{(x+1)(x-1)}{x^2},f''(x)=\dfrac{2}{x^3} f(x)=x2(x+1)(x1),f′′(x)=x32

\qquad 可能的极值点 x 1 = − 1 , x 2 = 1 x_1=-1,x_2=1 x1=1,x2=1

( − ∞ , − 1 ) (-\infty,-1) (,1) − 1 -1 1 ( − 1 , 1 ) (-1,1) (1,1) 1 1 1 ( 1 , ∞ ) (1,\infty) (1,)
f ′ ( x ) f'(x) f(x) + + + 0 0 0 − - 0 0 0 + + +
f ( x ) f(x) f(x) ↗ \nearrow 极大值 ↘ \searrow 极小值 ↗ \nearrow

\qquad 单调递增区间: ( − ∞ , − 1 ] (-\infty,-1] (,1] [ 1 , + ∞ ) [1,+\infty) [1,+),单调递减区间: [ − 1 , 1 ] . [-1,1]. [1,1].极大值点为 ( − 1 , 0 ) (-1,0) (1,0),极小值点为 ( 1 , 4 ) (1,4) (1,4)

\qquad 可能的拐点: x = 0 x=0 x=0

( − ∞ , 0 ) (-\infty,0) (,0) 0 0 0 ( 0 , ∞ ) (0,\infty) (0,)
f ′ ′ ( x ) f''(x) f′′(x) − - + + +
f ( x ) f(x) f(x)拐点

\qquad 凸区间: ( − ∞ , 0 ] (-\infty,0] (,0],凹区间: [ 0 , + ∞ ) [0,+\infty) [0,+)

lim ⁡ x → ∞ f ( x ) = ∞ , lim ⁡ x → ∞ f ( x ) x = 1 , lim ⁡ x → ∞ [ f ( x ) − x ] = 2 \qquad \lim\limits_{x\rightarrow\infty}f(x)=\infty,\qquad \lim\limits_{x\rightarrow\infty}\dfrac{f(x)}{x}=1,\qquad \lim\limits_{x\rightarrow\infty}[f(x)-x]=2 xlimf(x)=,xlimxf(x)=1,xlim[f(x)x]=2

\qquad 所以 f ( x ) f(x) f(x)的竖直渐近线为 x = 0 x=0 x=0,斜渐近线为 y = x + 2 y=x+2 y=x+2

\qquad 函数图象如下:

在这里插入图片描述

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值