Unifying Large Language Models and Knowledge Graphs: A Roadmap 论文阅读笔记

Key Words: 

NLP, LLM, Generative Pre-training, KGs, Roadmap, Bidirectional Reasoning

Abstract:

LLMs are black models and can't capture and access factual knowledge. KGs are structured knowledge models that explicitly store rich factual knowledge. The combinations of KGs and LLMs have three frameworks, 

  1. KG-enhanced LLMs, pre-training and inference stages to provide external knowledge, used for analyzing LLMs and providing interpretability.

  2. LLM - augmented KGs, KG embedding, KG completion, KG construction, KG-to text generation, KGQA.

  3. Synergized LLMs+KGs, enhance performance in knowledge representation and reasoning.

Background

Introduction of LLMs

Encoder-only LLMs

Use the encoder to encode the sentence and understand the relationships between words.

Predict the mask words in an input sentence. Text classification, named entity recognition.

Encoder-decoder LLMs

Adopt both encoder and decoder modules. The encoder module works for encoding the input into a hidden-space, and the decoder is used to generate the target output text. Summarization, translation, question answering.

Decoder-only LLMs

Adopt the decoder module to generate target output text.

Prompt Engineering

Prompt is a sequence of natural language inputs for LLMs that specified for the task, including:

  1. Instruction: instructs the model to do a specific task.

  2. Context: provides the context for the input text or few-shot examples.

  3. Input text: the text that needs to be processed by the model.

Improve the capacity of LLMs in deverse complex tasks. CoT prompt enables complex reasoning capabilities throught intermediate reasoning steps.

Introduction of KGs

Roadmap

KG-enhanced LLMs

  • Pre-training stage

    • Integrating KGs into Training Objective

    • Integrating KGs into LLMs Input

    • KGs Instruction-tuning

  • Inference stage

    • Retrieval-Augmented Knowledge Fusion

      • RAG

    • KGs Prompting

  • Interpretability

    • KGs for LLM probing

    • KGs for LLM Analysis

LLM-augmented KGs

Knowledge Graph embedding aims to map each entity and relation into a low-dimensional vector space.

  • Text encoders for KG-related tasks

  • LLM processes the original corpus and entities for KG construction.

    • End-to-End KG Construction

    • Distilling Knowledge Graphs from LLMs

  • KG prompt, KG completion and KG reasoning.

    • PaE (LLM as Encoders)

    • PaG (LLM as Generators)

  • LLM-augmented KG-to-text Generation

    • Leveraging Knowledge from LLMs

    • Constructing large weakly KG-text aligned Corpus

  • LLM-augmented KG Question Answering

    • LLMs as Entity/relation Extractors

    • LLMs as Answer Reasoners

Synergized LLMs + KGs

Synergized Knowledge Representation

Aims to design a synergized model can represent knowledge from both LLMs and KGs.

Synergized Reasoning
  • LLM-KG Fusion Reasoning

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值