运筹学final12·16markdown

/*补档:12.8markdown

得到路线图

出现问题:似乎这个根据经纬度坐标算出来距离的和其欧式距离不符

针对VRPTW问题的第一次模型研究:

 

 

 */

12.16markdown:

对于带时间窗的充电桩问题EVRPTW的研究:

Parameters

TW:

low bound & up bound

TW_s^i,TW_e^i

行驶时间:

Node i到node j行驶时间

tij

Duration:

充电时间d=0.5h

卸货时间TS=0.5h

Variables

Binary variable

x_{ijk}=\begin{cases}1 &\mbox{vehicle k node i to node j} \\0 & {else}\end{cases}

Constraints

1)出度=1

即从node i出发进入j的只有只有一辆车

\sum\limits_j{x_{ijk}} =1

2)入度=1

即从node j出发进入下一个i的只有只有一辆车

\sum\limits_i{x_{jik}} =1

3)流平衡约束:

const_flow_conservation

\sum\limits_k\sum\limits_i x_{ijk} -\sum\limits_k\sum\limits_i x_{jik}=0

4)起点&终点

​​​​​​​\sum\limits_k\sum\limits_j x_{0jk} -\sum\limits_k\sum\limits_j x_{n+1jk}=0

5)const_TW_1

开始服务时间在时间窗内

TW_{s}^{i} \leq t_{a}(k,i) \leq TW_{e}^{i}

6)const_TW_2

Node i 不是一个充电桩

t_a(k,i)+(t_{ij}+TS)x_{ijk}-M(1-x_{ijk}) \leq t_a(k,j)

7)const_TW_3

Node i 是一个充电桩

t_a(k,i)+(t_{ij}+d)x_{ijk}-M(1-x_{ijk}) \leq t_a(k,j)

8)const_load_capacity_1

\sum\limits_{i} {m_{i}^{k}} \leq CM

9)const_load_capacity_2

\sum\limits_{i} {v_{i}^{k}} \leq CV

10)const_battery_capacity

未完待续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值