slam中李群和李代数笔记

本文深入探讨了SLAM(Simultaneous Localization and Mapping)中的李群和李代数概念。首先介绍了群的定义,特别是旋转群在描述旋转中的应用,包括旋转矩阵、欧拉角和四元数的表示。接着,阐述了李代数的定义,以及在SLAM中BCH公式的近似形式和李代数的求导方法。最后,讨论了李群与李代数之间的联系,如指数映射和对数映射在旋转矩阵与旋转向量转化中的作用。
摘要由CSDN通过智能技术生成

一、slam中的李群

1、群的定义

群是一种集合集合加上一种运算的代数结构。要满足:封闭性、结合律、幺元和逆。

2、旋转和群

三维空间中,描述一个物体的旋转(此处仅考虑刚体),旋转的表示有如下几种:旋转矩阵,四元数,欧拉角。其中旋转矩阵是一种特殊正交群,记为SO(3),而用旋转矩阵表示旋转有一点小瑕疵,故我们引入了欧拉角和四元数,并学习使用她们计算旋转,理解她们和群之间的联系。

旋转矩阵:

 首先,我们有一个世界坐标系,该坐标系是恒定不变的,然后我们选择一个刚体,比如,一个诺基亚,我们将其抛入空中,假设其由姿态A变为姿态B(此处不考虑平移,仅考虑旋转)。那么,我们可以通过这样一种方式来描述旋转,选择一个相对于世界坐标系固定的 point a ,通过 point a 相对于诺基亚视角中的位置变化来描述旋转,即我们以诺基亚机身的中点为原点构建一个三维坐标系,则 point a 在诺基亚旋转前后的坐标可记为 [x0,y0,z0]T [x1,y1,z1]T ,请记住,point a 在世界坐标系中并未改变,坐标的改变是由于坐标系的变化,即 [x0,y0,z0]T [x1,y1,z1]T 使用的并不是同一组正交基(相对于世界坐标),我们记为 [e1,e2,e3] ,和 [e1',e2',e3'] ,利用 point a 在世界坐标系中的不变性,我们得到如下等式:

[e1,e2,e3][x0,y0,z0]T=[e1',e2',e3'][x1,y1,z1]T1

注意,这里的 [e1,e2,e3] 是一个 3X3 的矩阵,且 e1 e2 e3 为正交基向量,由正交基性质易得:

[e1T,e2T,e3T]T[e1,e2,e3]=I2

在式1两边左乘 [e1T,e2T,e3T]T 则得到下式:
[x0,y0,z0]T=[e1T,e2T,e3T]T[e1',e2',e3'][x1,y1,z1]T3

其中我们将矩阵 [e1T,e2T,e3T]T[e1',e2',e3'] 记为 R ,称为旋转矩阵。而这旋转矩阵正是一种群,我们称之为特殊正交群。

欧拉角:

 在引入欧拉角之前,我们先来考虑一个最简单的旋转—绕某一轴的旋转,这种旋转我们可以简单的用外积来表示,即用一个向量来表示,该向量可表示为 aθ 。(其实,对于任意一个旋转,一定可以看成是绕某个轴的旋转,这里便于叙述,不细讲)

 我们不难想象,任意的一个旋转总能分解为绕一组正交基的三次旋转,特别的,当我们用三次连续的依次绕ZYX轴旋转时,得到的 θ1,θ2,θ3 分为称为偏航角yaw,俯仰角pitch和滚转角roll,注意,此处强调连续,是指每次旋转后的正交基都发生了改变,故三个角度分别以最开始的坐标轴,绕Z轴旋转后的坐标轴,和再绕Y轴旋转后的坐标轴为坐标系。(ZYX这一顺序只是我们最常用的一种欧拉角,也可能采用其他顺序)

 那么如何将欧拉角与旋转矩阵或者说群联系起来呢,一个绕X,Y,Z轴的旋转,可以分别用旋转矩阵 R(θx) R(θy) R(θz) 来描述:

Rx(θ)=1000cosθsinθ0sinθcosθ

Ry(θ)=cosθ0sinθ010sinθ0cosθ

Rz(θ)=cosθ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值