强化学习中的自我博弈(self-play)

自我博弈(Self-Play)[1]是应用于智能体于智能体之间处于对抗关系的训练方法,这里的对抗关系指的是一方的奖励上升必然导致另一方的奖励下降。通过轮流训练双方的智能体就能使得双方的策略模型的性能得到显著提升,使得整个对抗系统达到正和博弈的效果。这种训练机制最早运用于跳棋游戏[2],后来在棋类,MOBA类等对抗性策略游戏中被广泛应用,例如AlphaGo、AlphaStar。

自我博弈有三个主要创新点。第一是探索课程,在稀疏奖励的环境下,将最终目标分割成若干个容易实现的小目标,每个目标都基于一定的奖励,使奖励变得稠密,并对智能体的探索行为给予一定的奖励。但随着训练的进行,探索奖励应当逐渐衰减为0。第二是对手抽样,智能体在面对过强或过弱的对手时,训练都会难以取得成效,因此环境中需要存储对手不同时期的训练版本,让较弱的一方有机会获胜,较弱的一方策略提升的同时会反过来促进较强一方变得更强。第三是鲁棒学习策略,为了防止智能体的策略拟合在某一种固定的对手身上,需要给对手引入多样性,给环境引入随机变量。

为了判断智能体的强弱,使自我博弈使用水平相近的智能体进行对抗训练,根据ML-Agents中的做法,较好的解决方式是引入ELO评级系统,这是一种计算零和游戏中两个玩家之间相对水平的方法。每一个玩家都有一个初始ELO分数(通常为1200),通过对战胜负结果更新ELO分数,假定玩家A的初始ELO分数为,玩家A的初始ELO分数为,则玩家A的预期胜利概率为:
E A = 1 1 + 1 0 R B − R A 400 E_A = \frac{1}{1+10^{\frac{R_B-R_A}{400}}} E

NFSP (Neural Fictitious Self-Play)是一种用于复杂博弈论问题的强化学习算法,它结合了自我对弈和深度学习。在Python中实现NFSP通常涉及以下几个步骤: 1. **环境定义**:首先,需要定义游戏环境(比如棋盘游戏),它应该支持玩家间的对战,并返回状态转换、得分等信息。 2. **神经网络模型**:创建一个神经网络模型,例如使用Keras或PyTorch,作为代理(agent)。这个模型通常用来预测每个玩家的动作概率或直接推荐动作。 3. **策略网络** 和 **价值网络**:NFSP包含两个网络:策略网络用于选择行动,价值网络则评估当前的状态。它们可能共享一部分底层的特征提取层。 4. **Fictitious Play**:模拟两套虚拟的策略,让它们相互对局并累积经验。每次对局后,根据对局结果更新策略网络(例如使用梯度下降法)。 5. **对抗训练**:现实世界中的玩家(策略网络)与虚构玩家(另一套策略网络)对战,收集数据进行网络优化。 6. **迭代过程**:不断重复上述过程,交替训练真实策略和虚构策略,直到收敛或达到预设的训练轮数。 下面是一个简化的Python代码示例(假设我们有一个环境类`GameEnv`): ```python import torch from torch.distributions import Categorical import numpy as np class NfspAgent: def __init__(self, env, model): self.env = env self.model = model self.strategy_net = ... # 初始化策略网络 self.value_net = ... # 初始化价值网络 self.v_fictitious = ... # 虚构策略网络(暂未定义) def train(self, num_steps): for _ in range(num_steps): self.update_strategy() self.update_value() self.update_fictitious() def update_strategy(self): # 使用策略网络与虚幻对手玩一次游戏,获取经验 states, actions, rewards, _, dones = self.play_with_fictitious() # 更新策略网络参数 for s, a, r, d in zip(states, actions, rewards, dones): self.update_policy(s, a, r, d) def update_value(self): # 通过真实策略的对局经验更新价值网络 pass def update_fictitious(self): # 更新虚幻策略网络参数,基于当前的真实策略 pass def play_with_fictitious(self): # 与虚幻策略网络对局 ... ``` 这只是一个基础框架,具体的实现细节取决于你的环境和游戏规则。记得在实际应用中处理好数据结构和向量化,以便于GPU加速训练。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微笑小星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值