最速降曲线问题


设  OA是高度
不同,且不在同一铅垂线上的两定点, y
如果不计摩擦和空气阻力,一质点  m
在重力作用下从  O点沿一曲线降落至 。 A( p, qA点,问曲线呈何种形状时,质点降y
落的时间最短。
图 7-1 设曲线为  = y( x) ,坐标如图 7
1,质点由  O点开始运动,它的速度  v与它的纵坐标有关系
式中,  g是重力加速度。
在曲线上点 ( xy) 处,质点的运动速度为
式中,  s表示曲线的弧长,  t表示时间,于是
由于点  OA的横坐标分别是 0,  p,则质点  m从  O点运动到  A点所需时间为
 
(7.1.4))
这样,质点由  O点运动到  A点所需时间  t是  y( x)的函数,最速降线问题就是满足边界条件
y(0)= 0,  yp) =  q
的所有连续函数  y( x)中,求出一个函数  y使泛函式(7.1.4)取最小值。
对泛函求极值的问题称为变分问题,使泛函取极值的函数称为变分问题的解,也称为极值函数。
在微分学中,求函数  = y( x) 的极值是求自变量  x的值,当  x取这些值时,  y取极 大(小)值、取极值的必要条件是d y/d x= 0 。下面我们仿照函数微分的概念来定义泛函的变分概念,进而导出泛函极值存在的必要条件。设  yy0 是集合  C的元素,称δ −  y0 为函数  y在  y0处的变分。
这里的δ y是  x的函数,它与 ∆ y的区别在于:变分 δ y反映的是整个函数的改变,
而 ∆ y表示的是同一个函数  y( x)因  x的不同值而产生的差异。在本书,我们总是假定  y( x)和  F( xyy′) 都是充分光滑的,且  y( x)在两个端点处固定,即  y( a) = y1,  y( b) =  y2 (7.1.5)
式中,  y1,  y2是两个常数。

考虑泛函

 
(7.1.6)当函数  y( x)有微小改变且变为  y( x) +δ y( x) 时,利用
上式可推出
上式称为  y)的变分,记为δ y),即
(7.1.7)
下面我们证明,泛函  y)取极值的必要条件是
δ Jy) = 0 (7.1.8)或者
(7.1.9)
设  = y( x) 使泛函  y)取极值,取函数  y( x)变分的特殊形式为
δ y( x) = εϕ( x)
式中, ε是任意小的实数;ϕ( x)是充分光滑的任意函数,并且满足条件
ϕ( a) = 0, ϕ( b) = 0
这样,函数
y( x) +εϕ( x) 满足边界条件式(7.1.5)。因此,泛函  Jy( x) +εϕ( x)]
当 ε= 0时取最小值  Jy( x)] ,从而有
 
由于
则有
(7.1.10)
以 ε乘式(7.1.10),且 δ y( x) =εϕ( x)
则有
应用分部积分,我们作进一步的分析,有
由ϕ( x)的任意性,可得
(7.1.11)
式(7.1.11)称为欧拉-拉格朗日方程,简记为 E-L方程,

必要条件

= y( x) 使泛函式(7.1.6)取极小值,则  = y( x) 一定使欧拉-拉格朗日方程式(7.1.11)满足边界条件式(7.1.5)的解。
我们把满足 E-L方程边值问题的解称为驻留函数,对应的积分曲线称为驻留曲线。严格地讲,E-L方程边值问题的解满足变分问题的必要条件,因此它是否是极值函数,还需作进一步的判别。在实际问题中,极值的存在性通常给出问题时已经肯定了,这样,当一个实际现象已知其有唯一的极值存在,而这时也只得到一个驻留函数,则可以判定这个驻留函数就是极值函数。

最终解答

且y(0)=0,y(p)=q
这样
(7.1.12)
其E-L方程为
由于
所以有
(7.1.13)
将(7.1.12)代入式(7.1.13)
(7.1.14)
引入变量代换x=x(θ),并设y'=cot(θ/2)
则由式(7.1.14)可得
上式对θ求导,得
所以
 
根据曲线过原点(0,0)及(p,q)可求出x0=0及r,这样,所求曲线为 [1]  
### 信赖域算法用于空间曲线拟合的方法 #### 数学模型构建 对于空间曲线的拟合问题,通常可以通过建立非线性小二乘问题来解决。假设给定一组数据点 \((x_i, y_i)\),目标是找到一条参数化的空间曲线 \(f(x; p)\),使得该曲线尽可能接近这些观测点。这里 \(p\) 表示待估计的参数向量。 为了衡量拟合的好坏程度,定义残差函数\[ r(p) = f(x;p) - y\] 并试图小化其平方和形式的目标函数\[ J(p) = \frac{1}{2}\sum_{i=1}^{m}(r_i)^2=\frac{1}{2}||r(p)||_2^2 \][^1] #### 构建信赖域子问题 在每次迭代过程中,通过局部近似当前点处的目标函数及其梯度信息,在一个限定区域内寻找更好的解。具体来说就是构造如下二次规划子问题: \[ \min_d m_k(d)=g_k^Td+\frac{1}{2}d^TB_kd \\ s.t.\| d \|≤Δ_k, \] 其中\( g_k \) 是当前位置下的负梯度方向;\( B_k \approx ∇^2J(p_k) \) 或者采用有限差分等方式获得的一个正定矩阵作为Hessian阵的替代品;而半径 Δk 则决定了本次探索范围大小。 当求得试探步 dk 后,则需评估新旧两点之间实际减少量与预测减少量的比例ρ: \[ \rho=\frac{\text { actual reduction }}{\text { predicted reduction }} \] 依据 ρ 的取值调整下一步的信任区域尺寸并决定是否接受新的位置更新。 #### 折线法 (Dogleg Method) 一种常用的策略是在牛顿步和陡下降步之间选取合适的组合形成终的方向矢量dk 。设 sGN 和 sgD 分别代表上述两种情况对应的搜索路径,则有三种可能的选择方案: - 当 \(\left\|\mathbf{s}_{G N}\right\|<\Delta_k\) ,即牛顿步位于信任区内时直接采纳; - 若不满足条件但仍然小于等于两倍边界长度 (\(2 * Δk\)) ,则按照特定比例混合两者得到折衷结果; - 超过此限度的话仅沿速降线路前进直至触及边缘为止. ```matlab function [p_new,delta_next] = dog_leg_method(Jacobian,residual,p_current,delta) % 计算牛顿步和最速下降步... if norm(s_GN)<delta % 牛顿步可行 d = s_GN; elseif norm(s_GN)<=2*delta && norm(s_GD)>delta alpha=(delta^2-norm(s_GD)^2)/(norm(s_GD-s_GN)^2); d=s_GD+alpha*(s_GN-s_GD); else d=delta/norm(s_GD)*s_GD;% 只能走最速下降路线到边界的距离. end rho=(residual'*residual-(residual-Jacobian*d)'*(residual-Jacobian*d))/(gradient'*d+(0.5*d')*B*d); if rho>eta_min&&rho<=eta_max delta_next=min([gamma_up*delta,max(gamma_down*delta,norm(d))]); p_new=p_current+d; else if rho<=eta_min delta_next=gama_down*delta; p_new=p_current; else delta_next=max(delta,gamma_up*delta); p_new=p_current+d; end ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值