数学分析原理答案——第一章 习题6

【第一章 习题6】

固定 b > 1 b > 1 b>1

(a) 如果 m , n , p , q m,n,p,q m,n,p,q是整数, n > 0 , q > 0 n > 0,q > 0 n>0,q>0,且 r = m n = p q r = \frac{m}{n} = \frac{p}{q} r=nm=qp。证明

( b m ) 1 n = ( b p ) 1 q \left( b^{m} \right)^{\frac{1}{n}} = \left( b^{p} \right)^{\frac{1}{q}} (bm)n1=(bp)q1

因此,定义 b r = ( b m ) 1 n b^{r} = \left( b^{m} \right)^{\frac{1}{n}} br=(bm)n1有意义。

(b) 证明,如果 r r r s s s是有理数,那么 b r + s = b r × b s b^{r + s} = b^{r} \times b^{s} br+s=br×bs

(c) 如果 x x x是实数。定义 B ( x ) B(x) B(x)为所有数 b t b^{t} bt的集,这里 t t t是有理数并且 t ≤ x t \leq x tx。证明

b r = sup ⁡ B ( r ) b^{r} = \sup{B(r)} br=supB(r)

这里 r r r是有理数。由此,对每个实数 x x x,定义

b x = sup ⁡ B ( x ) b^{x} = \sup{B(x)} bx=supB(x)

是合理的。

(d) 证明,对于一切实数 x x x y y y b x + y = b x b y b^{x + y} = b^{x}b^{y} bx+y=bxby

【证明】

(a) 设 b ′ = b 1 n q b^{'} = b^{\frac{1}{nq}} b=bnq1,那么有

( b m ) 1 n = ( ( ( b ′ ) n q ) m ) 1 n = ( ( b ′ ) m n q ) 1 n = ( b ′ ) m q \left( b^{m} \right)^{\frac{1}{n}} = \left( \left( \left( b^{'} \right)^{nq} \right)^{m} \right)^{\frac{1}{n}} = \left( \left( b^{'} \right)^{mnq} \right)^{\frac{1}{n}} = \left( b^{'} \right)^{mq} (bm)n1=(((b)nq)m)n1=((b)mnq)n1=(b)mq

( b p ) 1 q = ( ( ( b ′ ) n q ) p ) 1 q = ( ( b ′ ) n p q ) 1 / q = ( b ′ ) n p \left( b^{p} \right)^{\frac{1}{q}} = \left( \left( \left( b^{'} \right)^{nq} \right)^{p} \right)^{\frac{1}{q}} = \left( \left( b^{'} \right)^{npq} \right)^{1/q} = \left( b^{'} \right)^{np} (bp)q1=(((b)nq)p)q1=((b)npq)1/q=(b)np

由于 m n = p q \frac{m}{n} = \frac{p}{q} nm=qp,即 m q = n p mq = np mq=np,所以

( b m ) 1 n = ( b ′ ) m q = ( b ′ ) n p = ( b p ) 1 q \left( b^{m} \right)^{\frac{1}{n}} = \left( b^{'} \right)^{mq} = \left( b^{'} \right)^{np} = \left( b^{p} \right)^{\frac{1}{q}} (bm)n1=(b)mq=(b)np=(bp)q1

(b) 因为 r r r s s s是有理数,不妨设

r = m n            s = p q              m > 0 , p > 0    m 、 n 、 p 、 q ∈ Z r = \frac{m}{n}\ \ \ \ \ \ \ \ \ \ s = \frac{p}{q}\ \ \ \ \ \ \ \ \ \ \ \ m > 0,p > 0\ \ m、n、p、q\mathbb{\in Z} r=nm          s=qp            m>0,p>0  mnpqZ

b ′ = b 1 n q b^{'} = b^{\frac{1}{nq}} b=bnq1

b r + s = ( ( b ′ ) n q ) m n + p q = ( ( b ′ ) n q ) m q + p n n q b^{r + s} = \left( \left( b^{'} \right)^{nq} \right)^{\frac{m}{n} + \frac{p}{q}} = \left( \left( b^{'} \right)^{nq} \right)^{\frac{mq + pn}{nq}} br+s=((b)nq)nm+qp=((b)nq)nqmq+pn

根据(a)中有理数的定义,

( ( b ′ ) n q ) m q + p n n q = ( ( ( b ′ ) n q ) m q + p n ) 1 n q = ( ( b ′ ) n q ( m q + p n ) ) 1 n q = ( b ′ ) m q + p n \left( \left( b^{'} \right)^{nq} \right)^{\frac{mq + pn}{nq}} = \left( \left( \left( b^{'} \right)^{nq} \right)^{mq + pn} \right)^{\frac{1}{nq}} = \left( \left( b^{'} \right)^{nq(mq + pn)} \right)^{\frac{1}{nq}} = \left( b^{'} \right)^{mq + pn} ((b)nq)nqmq+pn=(((b)nq)mq+pn)nq1=((b)nq(mq+pn))nq1=(b)mq+pn

同理

b r × b s = ( ( b ′ ) n q ) m n × ( ( b ′ ) n q ) p q = ( ( ( b ′ ) n q ) m ) 1 n × ( ( ( b ′ ) n q ) p ) 1 q = ( ( b ′ ) n m q ) 1 n × ( ( b ′ ) n p q ) 1 q = ( b ′ ) m q + p n b^{r} \times b^{s} = \left( \left( b^{'} \right)^{nq} \right)^{\frac{m}{n}} \times \left( \left( b^{'} \right)^{nq} \right)^{\frac{p}{q}} = \left( \left( \left( b^{'} \right)^{nq} \right)^{m} \right)^{\frac{1}{n}} \times \left( \left( \left( b^{'} \right)^{nq} \right)^{p} \right)^{\frac{1}{q}} = \left( \left( b^{'} \right)^{nmq} \right)^{\frac{1}{n}} \times \left( \left( b^{'} \right)^{npq} \right)^{\frac{1}{q}} = \left( b^{'} \right)^{mq + pn} br×bs=((b)nq)nm×((b)nq)qp=(((b)nq)m)n1×(((b)nq)p)q1=((b)nmq)n1×((b)npq)q1=(b)mq+pn

(c) 首先对于任意的有理数 s = p q > 0 、 p ∈ Z + 、 q ∈ Z s = \frac{p}{q} > 0、p \in \mathbb{Z}^{+}、q\mathbb{\in Z} s=qp>0pZ+qZ,都有

b s > 1 b^{s} > 1 bs>1

这是因为

b > 1 ⇒ b p > 1 ⇒ b s = ( b p ) 1 q > 1 b > 1 \Rightarrow b^{p} > 1 \Rightarrow b^{s} = \left( b^{p} \right)^{\frac{1}{q}} > 1 b>1bp>1bs=(bp)q1>1

所以对于所有的有理数 t ≤ r t \leq r tr,都有 b r − t ≥ 1 b^{r - t} \geq 1 brt1。根据(b)的结论

b t − b r = b t − b t b r − t = b t ( 1 − b r − t ) ≤ 0 b^{t} - b^{r} = b^{t} - b^{t}b^{r - t} = b^{t}\left( 1 - b^{r - t} \right) \leq 0 btbr=btbtbrt=bt(1brt)0

所以

b r = sup ⁡ B ( r ) b^{r} = \sup{B(r)} br=supB(r)

注意,对每个实数 x x x,定义 b x = sup ⁡ B ( x ) b^{x} = \sup{B(x)} bx=supB(x)的有意义是指的 b x b^{x} bx定义是合法的,因为它符合函数的定义的特性------一个自变量对应唯一函数值;合理性是指 b x b^{x} bx的有序性,也就是:

x 1 < x 2 ⇔ b x 1 < b x 2 x_{1} < x_{2} \Leftrightarrow b^{x_{1}} < b^{x_{2}} x1<x2bx1<bx2

因为每个实数 x x x都处在两个任意靠近的有理数之间,所以 x 1 、 x 2 x_{1}、x_{2} x1x2之间存在多个有理数,设其中三个为 s 1 、 s 2 、 s 3 s_{1}、s_{2}、s_{3} s1s2s3,即 x 1 < s 1 < s 2 < s 3 < x 2 x_{1} < s_{1} < s_{2} < s_{3} < x_{2} x1<s1<s2<s3<x2。根据 b x b^{x} bx的定义,可得

b x 1 ≤ b s 1 < b s 2 < b s 3 ≤ b x 2 b^{x_{1}} \leq b^{s_{1}} < b^{s_{2}} < b^{s_{3}} \leq b^{x_{2}} bx1bs1<bs2<bs3bx2

b x 1 < b x 2 b^{x_{1}} < b^{x_{2}} bx1<bx2

(d) 首先对于任意的实数 s > 0 s > 0 s>0,都有自然数 n n n,使得

b 1 n − 1 < s b^{\frac{1}{n}} - 1 < s bn11<s

1 − b − 1 n < s 1 - b^{- \frac{1}{n}} < s 1bn1<s

这是因为根据不等式等式( 1 < a < c 1 < a < c 1<a<c

c − a = c n − a n c n − 1 + c n − 2 a + … + a n − 1 < c n − a n n c - a = \frac{c^{n} - a^{n}}{c^{n - 1} + c^{n - 2}a + \ldots + a^{n - 1}} < \frac{c^{n} - a^{n}}{n} ca=cn1+cn2a++an1cnan<ncnan

c = b 1 n     a = 1 c = b^{\frac{1}{n}}\ \ \ a = 1 c=bn1   a=1

b 1 n − 1 < b − 1 n b^{\frac{1}{n}} - 1 < \frac{b - 1}{n} bn11<nb1

当自然数 n n n足够大时,必有

b − 1 n < s \frac{b - 1}{n} < s nb1<s

也就是

b 1 n − 1 < s b^{\frac{1}{n}} - 1 < s bn11<s

于是

1 − b − 1 n = b − 1 n ( b 1 n − 1 ) < b 1 n − 1 < s 1 - b^{- \frac{1}{n}} = b^{- \frac{1}{n}}\left( b^{\frac{1}{n}} - 1 \right) < b^{\frac{1}{n}} - 1 < s 1bn1=bn1(bn11)<bn11<s

也就是自然数 n n n使得

1 − b − 1 n < s 1 - b^{- \frac{1}{n}} < s 1bn1<s

下面利用反证法证明 b x + y = b x b y b^{x + y} = b^{x}b^{y} bx+y=bxby

  1. b x + y > b x b y b^{x + y} > b^{x}b^{y} bx+y>bxby

s = b x + y − b x b y s = b^{x + y} - b^{x}b^{y} s=bx+ybxby,根据前面的结论,存在自然数 n n n满足

b x + y − b x b y > b x + y ( 1 − b − 1 n ) b^{x + y} - b^{x}b^{y} > b^{x + y}\left( 1 - b^{- \frac{1}{n}} \right) bx+ybxby>bx+y(1bn1)

也就是

b x + y − 1 n > b x b y   # ( 1 ) \begin{array}{r} b^{x + y - \frac{1}{n}} > b^{x}b^{y}\ \#\left( \mathbf{1} \right) \end{array} bx+yn1>bxby #(1)

于是,可以找到有理数 r 、 s r、s rs满足

x − 1 2 n < r < x          y − 1 2 n < s < y x - \frac{1}{2n} < r < x\ \ \ \ \ \ \ \ y - \frac{1}{2n} < s < y x2n1<r<x        y2n1<s<y

x + y − 1 n < r + s x + y - \frac{1}{n} < r + s x+yn1<r+s

根据前面(b)的结论,可知

b r + s = b r b s b^{r + s} = b^{r}b^{s} br+s=brbs

又根据 b x b^{x} bx的有序性,可知

b x + y − 1 n < b r + s = b r b s < b x b s < b x b y b^{x + y - \frac{1}{n}} < b^{r + s} = b^{r}b^{s} < b^{x}b^{s} < b^{x}b^{y} bx+yn1<br+s=brbs<bxbs<bxby

这与前面的 ( 1 ) \mathbf{(1)} (1)矛盾。

  1. b x + y < b x b y b^{x + y} < b^{x}b^{y} bx+y<bxby

s = b x b y − b x + y s = b^{x}b^{y} - b^{x + y} s=bxbybx+y,根据前面的结论,存在自然数 n n n满足

b x b y − b x + y > b x + y ( b 1 n − 1 ) b^{x}b^{y} - b^{x + y} > b^{x + y}\left( b^{\frac{1}{n}} - 1 \right) bxbybx+y>bx+y(bn11)

也就是

b x + y + 1 n < b x b y   # ( 2 ) \begin{array}{r} b^{x + y + \frac{1}{n}} < b^{x}b^{y}\ \#\left( \mathbf{2} \right) \end{array} bx+y+n1<bxby #(2)

于是,可以找到有理数 r 、 s r、s rs满足

x < r < x + 1 2 n          y < s < y + 1 2 n x < r < x + \frac{1}{2n}\ \ \ \ \ \ \ \ y < s < y + \frac{1}{2n} x<r<x+2n1        y<s<y+2n1

r + s < x + y + 1 n r + s < x + y + \frac{1}{n} r+s<x+y+n1

根据前面(b)的结论,可知

b r + s = b r b s b^{r + s} = b^{r}b^{s} br+s=brbs

又根据 b x b^{x} bx的有序性,可知

b x + y + 1 n > b r + s = b r b s > b x b s > b x b y b^{x + y + \frac{1}{n}} > b^{r + s} = b^{r}b^{s} > b^{x}b^{s} > b^{x}b^{y} bx+y+n1>br+s=brbs>bxbs>bxby

这与前面的 ( 2 ) \mathbf{(}\mathbf{2}\mathbf{)} (2)矛盾。

综上可得 b x + y = b x b y b^{x + y} = b^{x}b^{y} bx+y=bxby

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值