缩放系数计算

把一个物品放入到一个背景框中,背景框可能比物品大,也可能比物品小,

那么就需要进行缩放,才能是物品很好的放入背景框中。

缩放系数:

 local scale = itemBgSize.width/itemImage:getContentSize().width
 itemImage:setScale(scale-0.1)

也可以:

local scale = (itemBgSelectSize.height-12)/itemImage:getContentSize().height
itemImage:setScale(scale)



### 关于LlamaFactory中LoRA缩放系数设置或计算方法 在探讨LlamaFactory中的低秩适应(Low-Rank Adaptation, LoRA)技术时,理解其缩放因子的设定至关重要。通常情况下,在实现LoRA的过程中,缩放因子用于调整微调过程中新增参数的影响程度。 对于LlamaFactory而言,LoRA缩放因子通常是通过超参数的形式指定给模型训练过程。具体来说: - 缩放因子一般定义为`lora_alpha`,该值决定了原始权重矩阵与新引入的小型可学习矩阵之间的相对重要性[^1]。 当应用到具体的框架如Hugging Face Transformers库时,可以通过配置文件或者API接口来设置这个参数。例如,在初始化带有LoRA支持的预训练模型实例时,可以传递相应的参数以控制这一行为: ```python from transformers import AutoModelForCausalLM, LoraConfig config = LoraConfig( r=8, # rank of the low-rank decomposition lora_alpha=16, # scaling factor for LoRA layers ) model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", config=config) ``` 上述代码片段展示了如何利用Hugging Face提供的工具集来加载并配置具有特定LoRA属性的语言模型。这里设置了`r`作为分解等级而`lora_alpha`即为我们讨论的对象——缩放因子[^2]。 值得注意的是,默认情况下许多实现会采用经验性的初始值,但在实际应用场景下可能需要根据任务特点进行适当调整优化性能表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值