欧拉公式推导

欧拉恒等式

        e^{i\pi } + 1 = 0

        e = 1 + 1/1! + 1/2! + 1/3! + 1/4! + 1/5! + ...

        e^{x} = 1 + x/1! + x^{2}/2! + x^{3}/3! + x^{4}/4! + x^{5}/5! + ...

函数推导过程(幂级数展开或者泰勒展开,后面用到了三角函数展开的方式)

        从导数中推导e^{x}的方程,对于该函数当x=0时为1即初值,导数为自身;

        设f(x) = e^{x}, f(x) ^{'} = e^{x},当x = 0时,

        f(x) ^{'} = 1, f(x) = 1 + x,=> f(x)^{'} = 1 + x,f(x) = 1 + x + 1/2x^{2},

         f(x)^{'} = 1 + x,f(x) = 1 + x + 1/2x^{2},=> f(x)^{'} = 1 + x + 1/2x^{2},f(x) = 1 + x + 1/2x^{2}+ 1/6x^{3},        

        因为函数是收敛的所以会越来越精确(引用自MIT公开课)

同时

        sin(x) = x / 1! - x^{3}/3! + x^{5}/5! - x^{7}/7! + .....

        cos(x) = 1 - x^{2}/2! + x^{4}/4! - x^{6}/6! + x^{8}/8! +.....

        三角函数也可以通过初值点、一阶导数、二阶导数的方式逼近展开乘幂级数?

这两个方程有什么联系

        sin(x) + cos(x) = 1 + x / 1! - x^{2}/2! - x^{3}/3! + x^{4}/4! + x^{5}/5! - x^{6}/6! - x^{7}/7! + x^{8}/8! .....

可以看到某些项的符号不匹配,如果使用负数i就可以相等了

        e^{ix} = 1 + (ix)/1! + (ix)^{2}/2! + (ix)^{3}/3! + (ix)^{4}/4! + (ix)^{5}/5! + ... = 1 + (ix)/1! - x^{2}/2! - ix^{3}/3! + ix^{4}/4! + ix^{5}/5! + ...

        e^{ix} = cos(x) + isin(x);,

当x = PI时

        e^{i\pi } = cos(\pi ) + isin(\pi )  => e^{i\pi } + 1 = 0

其中四元数的推导中会使用到欧拉公式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值