一文搞懂 蒸馏、量化、MoE 和 MHA !!

文章目录


一、知识蒸馏(模型压缩)技术

1. 什么是知识蒸馏

知识蒸馏(Knowledge Distillation)是一种模型压缩技术,通过训练小型 “学生模型” 模仿大型 “教师模型” 的输出分布,实现知识迁移。其核心在于利用教师模型的软标签(概率分布)而非硬标签,传递更丰富的类别间关系信息。14年 NIPS 上由Google 的 Hinton 发表的《Distilling the Knowledge in a Neural Network》是首次提出知识蒸馏这个概念。

蒸馏过程通常包括以下几个步骤:

(1)教师训练模型:首先,训练一个性能强大的大模型,这个模型通常具有大量的参数,能在各种任务上提供优异的性能。这个大模型即为 “教师模型”。

(2)学生模型设计:学生模型通常较小,参数量比教师模型少得多。其目的是在保证模型精度的同时,减少计算资源消耗,提高推理速度。

(3)蒸馏过程:在训练学生模型时,采用教师模型的输出作为监督信号。不同于传统的监督学习,蒸馏技术利用教师模型的软标签(Soft Labels)而非硬标签。软标签通常是教师模型的输出概率分布,它携带了更多的信息,例如类别之间的相似度,这使得学生模型能够在较少的数据和参数的情况下,学到更加丰富的知识。

(4)优化与精炼:学生模型通过模拟教师模型的行为,逐渐学习到其潜在的知识结构。通过反复训练,学生模型在大部分情况下能够接近或达到教师模型的性能,同时具有更高的计算效率和更小的内存占用。

2. 主要作用

模型压缩:蒸馏技术可以将大模型压缩成较小的模型,使得其在移动设备或计算资源有限的环境中依然可以发挥较高的性能。

知识迁移:学生模型不仅继承了教师模型的知识,还能在一些情况下进行自我优化,提升性能。

推理效率:由于学生模型的规模较小,它在推理时所需的计算资源和时间都显著减少,有助于加速推理过程,尤其适用于实时应用场景。

大模型在场景落地时,会存在部署推理成本高、专业知识不足、幻觉问题严重等问题,因此在专业级市场,需要基于蒸馏、微调、RAG等手段,提升大模型在垂直领域的表现。

二、模型量化

1. 什么是模型量化

模型量化(Quantization)是指以较低的推理精度损失将连续取值(通常为float32 或者大量可能的离散值)的浮点型权重近似为有限多个离散值(通常为 int8)的过程。通过以更少的位数表示浮点数据,模型量化可以减少模型尺寸,进而减少在推理时的内存消耗,并且在一些低精度运算较快的处理器上可以增加推理速度。具体如下图所示,[-T,T] 是量化前的数据范围,,[-127,127] 是量化后的数据范围。

量化将模型参数的表示从浮点数精度降低为整数或低精度形式,以减小模型的存储和计算开销。

2. 主要作用

减小模型大小:如 int8 量化可减少 75% 的模型大小,int8 量化模型大小一般为 32 位浮点模型大小的 1/4:

  •  减少存储空间:在端侧存储空间不足时更具备意义。
  • 减少内存占用:更小的模型当然就意味着不需要更多的内存空间。
  • 减少设备功耗:内存耗用少了推理速度快了自然减少了设备功耗。

加快推理速度:访问一次 32 位浮点型可以访问四次 int8 整型,整型运算比浮点型运算更快;CPU用 int8 计算的速度更快。

某些硬件加速器如 DSP/NPU 只支持 int8:比如有些微处理器属于 8 位的,低功耗运行浮点运算速度慢,需要进行 8bit 量化。

模块量化的主要意义就是加快模型端侧的推理速度,并降低设备功耗和减少存储空间。

三、MoE 混合专家模型技术

训练大型语言模型(LLM)通常需要大量的计算资源,这对许多组织和研究人员来说是一个很高的门槛。混合专家(MoE)技术通过将大型模型分解成更小的、专门的网络来解决这一难题。

MoE(Mixture of Experts,混合专家模型)是一种通过动态选择子模型(专家)处理输入数据的深度学习架构,旨在提升模型性能与效率。其核心思想是 “术业有专攻”,即让不同专家专注于特定任务,通过门控网络动态调度专家资源,在降低计算成本的同时实现高性能输出。

1. 什么是 MoE

想象一个人工智能模型是一个专家团队,每个人都有自己独特的专业知识。混合专家(MoE)模型通过将复杂任务划分为(成为专家的)更小的专业网络来运行这一原则。每个专家专注于问题的一个特定方面,使模型能够更有效、更准确地解决任务。就像医生负责医疗问题,技师负责汽车问题,厨师负责烹饪一样,每个专家都有自己擅长的事情。通过合作,这些专家可以更有效地解决更广泛的问题。

2. 主要作用

计算高效性:MoE 通过动态分配任务,减少冗余计算。例如,DeepSeek-MoE 16B 的推理仅激活 2.8B 参数,计算量比同等性能的稠密模型降低 60%。

参数可扩展性:一是专家的多样化能力使 MoE 模型具有高度的灵活性,通过召集具有专业能力的专家,MoE模式可以承担更广泛的任务。二是将复杂的问题分解成更小、更易于管理的任务,有助于 MoE 模型处理日益复杂的输入。三是支持扩展到数百甚至上千个专家,模型容量大幅提升(如谷歌的 Switch Transformer 达 1.6万亿参数),同时保持分布式并行计算的可行性。

任务适应性:一是 MoE 的 “分而治之” 方法,其中任务分别执行,增强了模型对故障的容错弹性。如果一个专家遇到问题,并不一定会影响整个模型的功能。二是在多模态、复杂推理等场景中,MoE 通过专家分工实现精准处理,例如 GPT-4 的 MoE 架构能分别处理文本生成、逻辑推理和图像分析任务。

四、MHA 多头注意力机制技术

多头注意力机制(Multi-Head Attention)是深度学习领域中一种重要的技术,最早由 Vaswani 等人在2017年的论文《Attention is All You Need》中提出。

多头注意力(Multi-Head Attention)是一种在Transformer 模型中被广泛采用的注意力机制扩展形式,它通过并行地运行多个独立的注意力机制来获取输入序列的不同子空间的注意力分布,从而更全面地捕获序列中潜在的多种语义关联。

在多头注意力中,输入序列首先通过三个不同的线性变换层分别得到 Query、Key和 Value。然后,这些变换后的向量被划分为若干个 “头”,每个头都有自己独立的 Query、Key 和 Value 矩阵。对于每个头,都执行一次 Scaled Dot-Product Attention(缩放点积注意力)运算,即:

最后,所有头的输出会被拼接(concatenate)在一起,然后再通过一个线性层进行融合,得到最终的注意力输出向量。

通过这种方式,多头注意力能够并行地从不同的角度对输入序列进行注意力处理,提高了模型理解和捕捉复杂依赖关系的能力。在实践中,多头注意力能显著提升 Transformerm模型在自然语言处理和其他序列数据处理任务上的性能。

参考资料:

AI新智力

Distilling the Knowledge in a Neural Network:https://arxiv.org/abs/1503.02531

深入剖析Transformer架构中的多头注意力机制:https://developer.aliyun.com/article/1649746

TensorFlow 模型优化:模型量化-张益新

模型压缩-神经网络量化基础:https://zhuanlan.zhihu.com/p/505570612

### DeepSeek-R1 模型概述 DeepSeek-R1 是一种基于强化学习激励推理能力的大规模语言模型 (LLM)[^1]。该模型旨在通过改进现有技术来增强其在各种实际应用中的表现,特别是在智能客服、推荐算法优化、搜索引擎语义理解实时数据分析等领域。 #### 工作原理详解 DeepSeek-R1 利用了组相对策略优化(GRPO)算法,这是一种用于提高模型泛化能力稳定性的方法[^2]。GRPO 算法的核心在于动态调整训练过程中不同参数之间的关系,从而使得模型能够在面对新数据时做出更合理的预测。 此外,为了进一步提升计算效率并减少资源消耗,DeepSeekR1 还引入了 MoE 架构下的多头潜意识注意力机制(MLA)。这种设计允许模型根据不同类型的输入灵活调配内部组件的工作负载,在保持高性能的同时降低了整体能耗[^3]。 #### 技术特点 - **高效的任务分发**:采用类似于人类专家协作的方式,即对于每一个具体的任务请求,系统能够自动识别最适合处理它的子模块,并将任务传递过去执行;这不仅提高了响应速度也增强了准确性。 - **自适应的学习框架**:借助于 GRPO 方法论的支持,使整个网络具备更强的学习灵活性——可以快速适应变化的数据分布情况而不失稳定性。 ```python def grpo_algorithm(params, data): """ 实现了一个简化版的GRPO算法逻辑 参数: params -- 当前模型参数集 data -- 输入样本 返回值: updated_params -- 更新后的最优参数配置 """ # 计算梯度方向... return updated_params ``` #### 应用场景展示 得益于上述技术创新,DeepSeek-R1 展现出广泛的应用潜力: - 在医疗健康领域内实现精准诊断辅助; - 支持金融科技公司开发更加个性化的理财产品建议服务; - 协助科研人员加速复杂课题的研究进展等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JOYCE_Leo16

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值