智谱宣布电脑智能体 GLM-PC 开放体验

1 月 23 日,智谱宣布旗下电脑智能体 GLM-PC 开放体验124。以下是关于 GLM-PC 的详细介绍1:

技术基础

GLM-PC 基于智谱多模态大模型 CogAgent,是全球首个面向公众、回车即用的电脑智能体。

功能特点

  • “左右脑” 分工协作
    • “左脑”:负责代码生成与逻辑执行,具有规划、循环执行、长思考能力(动态反思、纠错与优化)等功能。能够根据任务需求,综合分析目标与可用资源,生成执行路线图,将大型任务分解为可管理的子任务。
    • “右脑”:负责图像与 GUI 认知,专注于深度感知与交互体验,支持 GUI 图像理解、用户行为认知、图像语义解析等功能。能准确识别图形界面中的元素,如按钮和图标,并结合用户的历史操作信息提供智能推荐,还可以融合图像与文字信息,为用户提供全面的感知结果。
  • 具体功能应用
    • 数据处理与存储:能自动提取图片中的商品数据并存储至 Excel,还可将商品加入淘宝购物车。能快速查找并提取小红书上的电影等信息,撰写代码将信息存储在电脑上,若代码出错可自我修正,还能引用图文贴的图片发送至微信群聊。
    • 文档处理:可从指定网站中自动提取六级词汇,进行造句,并将词汇及其造句自动保存至新建 Word 文档并命名。能将小红书帖子文字内容保存至指定 Word 文档,将公司信息存储至桌面新建的 Excel 文件。
    • 生活服务:可自动为微信群好友定制个性化新春祝福语及祝贺图片 / 视频,并一键群发。还能快速查询航班信息,筛选最经济机票,并同步设置飞书日历提醒。

此前发展

GLM-PC v1.0 于 2024 年 11 月 29 日发布并开放内测,当时新增了 “深度思考” 模式,强化了逻辑推理和代码生成功能,同时支持 Windows 系统。

意义价值

GLM-PC 的推出为用户带来了更高效、智能的电脑使用体验,标志着人机交互的一个重要进步,有望在办公、学习等诸多领域发挥重要作用,推动人工智能在电脑操作自动化领域的进步。

<think>好的,用户想要在Python中调用GLM-4-Flash模型的示例代码。我需要先确认用户的需求,然后从提供的引用中找到相关的信息。 首先,查看用户提供的引用内容。引用[2]提到一个基于GLM-4-Flash的Python示例程序,结合了PyQt5做了一个聊天工具。引用[3]详细列出了AI的各种模型,其中GLM-4-Flash是免费调用的,并且提到了Python的API接口。 接下来,我需要根据这些引用信息整理出示例代码的步骤。通常调用API需要几个步骤:安装必要的库、设置API密钥、发送请求和处理响应。引用[3]中提到了API的基本信息,比如模型名称和参数设置,但具体的代码可能需要参考官方文档或示例。 不过,引用[2]中说明官方提供了Python的示例程序,结合PyQt5。但用户可能只需要基本的调用代码,不需要GUI部分。所以应该提取核心的API调用部分。例如,使用requests库发送HTTP请求,或者使用提供的SDK。 检查引用[3],里面提到了不同模型的上下文长度和输出限制,但示例代码可能需要更具体的信息,比如API的端点URL、请求头、数据格式等。通常,调用这类API需要API密钥,用户需要先注册获取。 可能的步骤是: 1. 安装必要的库,比如requests或zhipuai。 2. 导入库并设置API密钥。 3. 构造请求数据,包括模型名称、消息内容、温度等参数。 4. 发送POST请求到API端点。 5. 处理返回的JSON数据,提取回复内容。 需要确保引用的信息准确。引用[3]中提到GLM-4-Flash的API是免费的,所以用户需要先到AI平台注册获取API key。然后,根据官方文档,构造正确的请求格式。 可能遇到的错误包括API密钥未设置、参数错误或网络问题。在示例代码中需要提醒用户替换自己的API密钥,并处理可能的异常。 最后,生成相关问题,帮助用户深入使用,比如处理流式响应、异步调用或结合其他框架。</think>以下是基于AI官方文档整理的Python调用GLM-4-Flash模型的基础示例代码: ```python import requests import json # 从AI开放平台获取API_KEY(需注册) API_KEY = "your_api_key_here" # 替换为实际API密钥 def glm4_flash_chat(prompt): url = "https://open.bigmodel.cn/api/paas/v4/chat/completions" headers = { "Authorization": f"Bearer {API_KEY}", "Content-Type": "application/json" } data = { "model": "GLM-4-Flash", # 指定模型版本[^3] "messages": [{"role": "user", "content": prompt}], "temperature": 0.7, # 控制生成随机性(0~1) "max_tokens": 1024 # 限制最大输出长度[^3] } response = requests.post(url, headers=headers, json=data) if response.status_code == 200: return response.json()["choices"][0]["message"]["content"] else: return f"请求失败,状态码:{response.status_code}" # 示例调用 response = glm4_flash_chat("用Python写一个快速排序算法") print(response) ``` 代码说明: 1. 需要先到[AI开放平台](https://open.bigmodel.cn)注册获取API密钥[^3] 2. `model`参数必须指定为`GLM-4-Flash`才能调用该免费模型 3. `max_tokens`参数需控制在4K以内(即4096)[^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值