牛顿莱布尼茨公式 几何解释

根据以下考纲筛选考试重点**第一章 函数、极限与连续** 1. 函数 (1)理解函数的概念,掌握函数的表示法,会建立简单应用问题中的函数关系。 (2)了解函数的有界性、单调性、周期性和奇偶性。 (3)理解复合函数及分段函数的概念。 (4)掌握基本初等函数的性质及其图形,理解初等函数的概念。 2.数列与函数的极限 (1)理解数列极限和函数极限(包括左极限和右极限)的概念,了解极限的性质。 (2)掌握极限四则运算法则,会应用两个重要极限。 3.函数的连续性 (1)理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 (2)了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性定理、最大值和最小值定理、介值定理)及其简单应用。 **第二章 导数与微分** 1.导数概念 理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义及物理意义。 2.函数的求导法则 掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则。 3.高阶导数 理解高阶导数的概念,会求简单函数的高阶导数。 4.函数的微分 理解微分的概念,掌握导数与微分之间的关系,会求函数的微分。 **第三章 导数的应用** 1.洛必达法则 掌握用洛必达法则求未定式极限的方法。 2.函数的单调性、极值、最大值与最小值 (1)掌握函数单调性的判别方法及其应用。 (2)掌握函数极值、最大值和最小值的求法,会求解较简单的应用问题。 **第四章 不定积分** 1.不定积分的概念与性质 理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式。 2.不定积分的方法 掌握不定积分的换元积分法和分部积分法。 **第五章 定积分及其应用** 1.定积分的概念与性质 理解定积分的概念,了解定积分的几何意义、基本性质。 2.定积分的计算方法 理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法。 3. 会利用定积分计算平面图形的面积。
03-22
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值